$A_{\text {aeta }}$

IABU Headquarters
Delta Electronics, Inc.
Taoyuan Technology Center
No.18, Xinglong Rd., Taoyuan
Taoyuan County 33068, Taiwan
TEL: 886-3-362-6301/FAX: 886-3-371-630

Asia

Delta Electronics (Jiangsu) Ltd.
Wuiliang Plant 3
1688 Jiangxing
Wujiang Economic Develo
Wujiang City, Jiang Su Province,
People's Republic of China (Post code: 215200)
TEL: $86-512-6340-3008 /$ FAX: $86-769-6340-729$
Delta Greentech (China) Co., Ltd
ShangHai, P.R.C.
TEL: 86-21-58635678/FAX: 86-21-58630003
Delta Electronics (Japan), Inc
Tokyo Office
-1-14 Minato-ku Shibadaimon
TEL: 81-3-5733-1111/ FA
Delta Electronics (Korea), Inc.
1511, Byucksan Digital Valley 6-cha, Gasan-dong,
TEL: 82-2-515-5303/ FAX: 82-2-515-5302
Delta Electronics Int' (S) Pte Ltd
4Kaki Bukit Ave $1, \# 05$-05, Singapore 417939
TEL: 65-6747-5155/FAX: 65-6744-922
Delta Electronics (India) Pvt. L
Plot No 43 Sector 35 HSIIDC
lot No 43 Sector 35, HSIIDC
Gurgaon, PIN 122001, Haryana, India
TEL:91-124-4874900 / FAX: $91-124-4874945$
Americas
Delta Products Corporation (USA)
Raleigh Office
P. O. Box 12173,5101 Davis Drive

TEL: 1-919-767-3800/FAX: 1-919-767-8.
Delta Greentech (Brasil) S.A
1332-000-São Pau lo lor Edificio
TEL: +55 11 3568-3855 / FAX: +55 11 13568-3865
Europe
Deltronics (The Netherlands) B.V
Eindhoven Office
De Witbogt 15,5652 AG Eindhoven, The Netherlands
EL: 31-40-2592850 / FAX: 31-40-2592851

Delta Intelligent Sensorless Vector Control Drive

CP2000 Series User Manual

PLEASE READ PRIOR TO INSTALLATION FOR SAFETY.

V
AC input power must be disconnected before any wiring to the AC motor drive is made.
\square Even if the power has been turned off, a charge may still remain in the DC-link capacitors with hazardous voltages before the POWER LED is OFF. Please do not touch the internal circuit and components.
\square There are highly sensitive MOS components on the printed circuit boards. These components are especially sensitive to static electricity. Please do not touch these components or the circuit boards before taking anti-static measures. Never reassemble internal components or wiring.
\boxtimes Ground the AC motor drive using the ground terminal. The grounding method must comply with the laws of the country where the AC motor drive is to be installed.
\boxtimes DO NOT install the AC motor drive in a place subjected to high temperature, direct sunlight and inflammables.

च Never connect the AC motor drive output terminals U/T1, V/T2 and W/T3 directly to the AC mains circuit power supply.
\downarrow Only qualified persons are allowed to install, wire and maintain the AC motor drives.

V Even if the 3-phase AC motor is stop, a charge may still remain in the main circuit terminals of the AC motor drive with hazardous voltages.
\downarrow The performance of electrolytic capacitor will degrade if it is not charged for a long time. It is recommended to charge the driver which is stored in no charge condition every 2 years for $3 \sim 4$ hours.
■ Please use adjustable AC power source (ex: AC autotransformer) to charge the driver gradually to rated voltage, and should not charge it directly with rated voltage.

V Pay attention to the following when transporting and installing this package (including wooden crate, wood stave and carton box)

1. If you need to sterilize, deworm the wooden crate or carton box, please do not use steamed smoking sterilization or you will damage the VFD.
2. Please use other ways to sterilize or deworm.
3. You may use high temperature to sterilize or deworm. Leave the packaging materials in an environment of over $56^{\circ} \mathrm{C}$ for 30 minutes.

च It is strictly forbidden to use steamed smoking sterilization. The warranty does not covered VFD damaged by steamed smoking sterilization.

[^0]
Table of Contents

CHAPTER 1 INTRODUCTION 1-1
CHAPTER 2 INSTALLATION 2-1
CHAPTER 3 UNPACKING 3-1
CHAPTER 4 WIRING 4-1
CHAPTER 5 MAIN CIRCUIT TERMINALS 5-1
CHAPTER 6 CONTROL TERMINALS 6-1
CHAPTER 7 OPTIONAL ACCESSORIES 7-1
CHAPTER 8 OPTION CARDS 8-1
CHAPTER 9 SPECIFICATION 9-1
CHAPTER 10 DIGITAL KEYPAD 10-1
CHAPTER 11 SUMMARY OF PARAMETERS. 11-1
CHAPTER 12 DESCRIPTION OF PARAMETER SETTINGS 12-1
CHAPTER 13 APPLICATIOPN OF CP2000 13-1
CHAPTER 14 WARNING CODES 14-1
CHAPTER 15 FAULT CODES AND DESCRIPTIONS 15-1
CHAPTER 16 CANOPEN OVERVIEW 16-1
CHAPTER 17 PLC FUNCTIONS 17-1
CHAPTER 18 INTRODUCTION TO BACNET 18-1
CHAPTER 19 PT100 THERMISTOR 19-1
CHAPTER 20 EMC STANDARD INSTALLTION GUIDE 20-1

01 Introduction

Receiving and Inspection

After receiving the AC motor drive, please check for the following:

1. Please inspect the unit after unpacking to assure it was not damaged during shipment.
2. Make sure that the part number printed on the package corresponds with the part number indicated on the nameplate.
3. Make sure that the voltage for the wiring lie within the range as indicated on the nameplate.
4. Please install the AC motor drive according to this manual.
5. Before applying the power, please make sure that all the devices, including power, motor, control board and digital keypad, are connected correctly.
6. When wiring the AC motor drive, please make sure that the wiring of input terminals "R/L1, S/L2, T/L3" and output terminals"U/T1, V/T2, W/T3" are correct to prevent drive damage.
7. When power is applied, select the language and set the parameter groups via the digital keypad (KPC-CC01).
8. After applying the power, please trial run with the low speed and then increase the speed gradually to the desired speed.

Nameplate Information:

Model Name:

Serial Number:

RFI Jumper

RFI Jumper: The AC motor drive may emit the electrical noise. The RFI jumper is used to suppress the interference (Radio Frequency Interference) on the power line.

Frame A~C

Screw Torque: 8~10kg-cm(6.9-8.7 lb -in.)
Loosen the screws and remove the MOV-PLATE. Fasten the screws back to the original position after MOV-PLATE is removed.

Frame D~H

Remove the MOV-PLATE by hands, no screws need to be loosen

Main power isolated from earth:

If the AC motor drive is supplied from an isolated power (IT power), the RFI jumper must be cut off. Then the RFI capacities (filter capacitors) will be disconnected from ground to prevent circuit damage (according to IEC 61800-3) and reduce earth leakage current.

CAUTION!

1. When power is applied to the AC motor drive, do not cut off the RFI jumper.
2. Make sure main power is switched off before cutting the RFI jumper.
3. The gap discharge may occur when the transient voltage is higher than $1,000 \mathrm{~V}$. Besides, electro-magnetic compatibility of the AC motor drives will be lower after cutting the RFI jumper.
4. Do NOT cut the RFI jumper when main power is connected to earth.
5. The RFI jumper cannot be cut when Hi-pot tests are performed. The mains power and motor must be separated if high voltage test is performed and the leakage currents are too high.
6. To prevent drive damage, the RFI jumper connected to ground shall be cut off if the AC motor drive is installed on an ungrounded power system or a high resistance-grounded (over 30 ohms) power system or a corner grounded TN system.

Dimensions:

Frame A, Corresponding models:
VFD007CP23A-21;VFD015CP23A-21,VFD022CP23A-21,VFD037CP23A-21,VFD055CP23A-21, VFD007CP43A-21, VFD015CP43B-21,VFD022CP43B-21,VFD037CP43B-21,

VFD040CP43A-21,VFD055CP43B-21,VFD075CP43B-21,VFD007CP4EA-21,VFD015CP4EB-21, VFD022CP4EB-21,VFD037CP4EB-21; VFD040CP4EA-21,VFD055CP4EB-21,VFD075CP4EB-21

Unit : mm [inch]

Frame	W	H	D	W 1	H 1	$\mathrm{D} 1^{*}$	S 1	Ф1	Ф2	Ф3
A 1	130.0	250.0	170.0	116.0	236.0	45.8	6.2	22.2	34.0	28.0
	$[5.12]$	$[9.84]$	$[6.69]$	$[4.57]$	$[9.29]$	$[1.80]$	$[0.24]$	$[0.87]$	$[1.34]$	$[1.10]$

D1*: Flange mounting

Frame B

Corresponding models:
VFD075CP23A-21,VFD110CP23A-21,VFD150CP23A-21,VFD110CP43AB-21,
VFD150CP43B-21,VFD185CP43B-21,VFD110CP4EB-21,VFD150CP4EB-21, VFD185CP4EB-21

See Detail B

Frame C

Corresponding models:
VFD185CP23A-21,VFD220CP23A-21,VFD300CP23A-21,VFD220CP43A-21,
VFD300CP43B-21,VFD370CP43B-21,VFD220CP4EA-21,VFD300CP4EB-21,
VFD370CP4EB-21

See Detail B

Detail A (Mounting Hole)

Detail B (Mounting Hole)
Unit : mm [inch]

Frame	W	H	D	W 1	H 1	D^{*}	S 1	Ф1	Ф2	Ф3
C	250.0	400.0	210.0	231.0	381.0	92.9	8.5	22.2	34.0	50.0
	$[9.84]$	$[15.75]$	$[8.27]$	$[9.09]$	$[15.00]$	$[3.66]$	$[0.33]$	$[0.87]$	$[1.34]$	$[1.97]$

Frame D

Corresponding models:
D0-1: VFD450CP43S-00; VFD550CP43S-00

Frame	W	H1	D	W1	H2	H3	D1*	D2	S1	S2
D0-1	280.0	500.0	255.0	235.0	475.0	442.0	94.2	16.0	11.0	18.0
	$[11.02]$	$[19.69]$	$[10.04]$	$[9.25]$	$[18.70]$	$[17.40]$	$[3.71]$	$[0.63]$	$[0.43]$	$[0.71]$

Frame D

Corresponding models:
D0-2 VFD450CP43S-21; VFD550CP43S-21

2- $3-$
$-\varnothing 3$
$1-$

DETAIL A
(MOUNTING HOLE) (MOUNTING HOLE)

框号	W	H	D	W 1	H 1	H 2	H 3	$\mathrm{D} 1 *$	D 2	S 1	S 2	Ф1	Ф2	Ф3
$\mathrm{D} 0-2$	280.0	614.4	255.0	235.0	500.0	475.0	442.0	94.2	16.0	11.0	18.0	62.7	34.0	22.0
	$[11.02]$	$[24.19]$	$[10.04]$	$[9.25]$	$[19.69]$	$[18.70]$	$[17.40]$	$[3.71]$	$[0.63]$	$[0.43]$	$[0.71]$	$[2.47]$	$[1.34]$	$[0.87]$

Frame D

Corresponding models:
Frame D1:
VFD370CP23A-00, VFD450CP23A-00, VFD450CP43A-00,
VFD550CP43A-00, VFD750CP43B-00, VFD900CP43A-00,

Frame D2:

VFD370CP23A-21, VFD450CP23A-21, VFD450CP43A-21, VFD550CP43A-21, VFD750CP43B-21, VFD900CP43A-21

FRAME_D1

DETAILA (MOUNTING HOLE) (MOUNTING HOLE)

FRAME_D2

Unit : mm[inch]

| Frame | W | H | D | W 1 | H 1 | H 2 | H 3 | $\mathrm{D} 1 *$ | D 2 | S 1 | S 2 | $\mathrm{\Phi} 1$ | $\mathrm{\Phi} 2$ | Ф3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D 1 | 330.0 | - | 275.0 | 285.0 | 550.0 | 525.0 | 492.0 | 107.2 | 16.0 | 11.0 | 18.0 | | | |
| | $[12.99]$ | | $[10.83]$ | $[11.22]$ | $[21.65]$ | $[20.67]$ | $[19.37]$ | $[4.22]$ | $[0.63]$ | $[0.43]$ | $[0.71]$ | - | - | - |
| D 2 | 330.0 | 688.3 | 275.0 | 285.0 | 550.0 | 525.0 | 492.0 | 107.2 | 16.0 | 11.0 | 18.0 | 76.2 | 34.0 | 22.0 |
| | $[12.99]$ | $[27.10]$ | $[10.83]$ | $[11.22]$ | $[21.65]$ | $[20.67]$ | $[19.37]$ | $[4.22]$ | $[0.63]$ | $[0.43]$ | $[0.71]$ | $[3.00]$ | $[1.34]$ | $[0.87]$ |

D1*: Flange mounting

Frame E

Corresponding models:
Frame E1:
VFD550CP23A-00, VFD750CP23A-00,VFD900CP23A-00,VFD1100CP43A-00, VFD1320CP43B-00

Frame E2:
VFD550CP23A-21,VFD750CP23A-21,VFD900CP23A-21, VFD1100CP43A-21,VFD1320CP43B-21
FRAME_E1

Detail A (Mounting Hole)
Detail B (Mounting Hole)

FRAME_E2

Unit : mm [inch]

Frame	W	H	D	W1	H1	H2	H3	D1*	D2	S1, S2	S3	Ф1	Ф2	Ф3
E 1	370.0	-	300.0	335.0	589	560.0	528.0	143.0	18.0	13.0	18.0	-	-	-
	$[14.57]$		$[11.81]$	$[13.19$	$[23.19]$	$[22.05]$	$[20.80]$	$[5.63]$	$[0.71]$	$[0.51]$	$[0.71]$			
E 2	370.0	715.8	300.0	335.0	589	560.0	528.0	143.0	18.0	13.0	18.0	22.0	34.0	92.0
	$[14.57]$	$[28.18]$	$[11.81]$	$[13.19$	$[23.19]$	$[22.05]$	$[20.80]$	$[5.63]$	$[0.71]$	$[0.51]$	$[0.71]$	$[0.87]$	$[1.34]$	$[3.62]$

D1*: Flange mounting

Frame F

Correpsonding models:
Frame F1: VFD1600CP43A-00,VFD1850CP43B-00,

Frame F2: VFD1600CP43A-21,VFD1850CP43B-21
FRAME_F1

Detail A (Mounting Hole)

Detail B (Mounting Hole)

FRAME_F2

Detail A (Mounting Hole)

Unit : mm [inch]

Frame	W	H	D	W 1	H 1	H 2	H 3	$\mathrm{D} 1^{*}$	D 2	S 1	S 2	S 3
F 1	420.0	-	300.0	380.0	800.0	770.0	717.0	124.0	18.0	13.0	25.0	18.0
	$[16.54]$		$[11.81]$	$[14.96]$	$[31.50]$	$[30.32]$	$[28.23]$	$[4.88]$	$[0.71]$	$[0.51]$	$[0.98]$	$[0.71]$
F2	420.0	940.0	300.0	380.0	800.0	770.0	717.0	124.0	18.0	13.0	25.0	18.0
	$[16.54]$	$[37.00]$	$[11.81]$	$[14.96]$	$[31.50]$	$[30.32]$	$[28.23]$	$[4.88]$	$[0.71]$	$[0.51]$	$[0.98]$	$[0.71]$
Frame	$\Phi 1$	$\Phi 2$	$\Phi 3$									
F1	-	-	-									
F2	92.0	35.0	22.0									
	$[3.62]$	$[1.38]$	$[0.87]$									

Frame G

Corresponding models:
Frame G1: VFD2200CP43A-00,VFD2800CP43A-00
Frame G2: VFD2200CP43A-21,VFD2800CP43A-21

FRAME_G1

Detail B (Mounting Hole)

FRAME_G2

Detail A (Mounting Hole)

Frame H

Corresponding models:
Frame H1: VFD3150CP43A-00,VFD3550CP43A-00, VFD4000CP43A-00

Frame H2: VFD3150CP43C-00, VFD3550CP43C-00, VFD4000CP43C-00,

Frame H3: VFD3150CP43C-21, VFD3550CP43C-21, VFD4000CP43C-21

FRAME_H1

See Detail A(Mounting Hole)

See Detail B(Mounting Hole)

FRAME_H2

Side FIxing Baffle Plate

FRAME_H3

Side Fixing Baffle Plate

See Detail A(Mounting Hole)
See Detail B(Mounting Hole)

Frame	W	H	D	W1	W2	W3	W4	W5	W6	H1	H2	H3	H4
H1	$\begin{array}{\|c\|} \hline 700.0 \\ {[27.56]} \end{array}$	$\begin{gathered} 1435.0 \\ {[56.5]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 398.0 \\ {[15.67]} \\ \hline \end{array}$	$\begin{array}{\|l} \hline 630.0 \\ {[24.8]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 290.0 \\ {[11.42]} \\ \hline \end{array}$	-	-	-	-	$\begin{array}{\|l\|} \hline 1403.0 \\ {[55.24]} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1346.6 \\ {[53.02]} \\ \hline \end{array}$	-	
H2	$\begin{array}{\|c} 700.0 \\ {[27.56]} \end{array}$	$\left[\left.\begin{array}{l} 1745.0 \\ {[68.70]} \end{array} \right\rvert\,\right.$	$\left[\begin{array}{c} 404.0 \\ {[15.90]} \end{array}\right]$	$\begin{aligned} & 630.0 \\ & {[24.8]} \end{aligned}$	$\left\|\begin{array}{c} 500.0 \\ {[19.69]} \end{array}\right\|$	$\left\|\begin{array}{c} 630.0 \\ {[24.80]} \end{array}\right\|$	$\left[\begin{array}{c} 760.0 \\ {[29.92]} \end{array}\right]$	$\begin{aligned} & 800.0 \\ & {[31.5]} \end{aligned}$	-	$\left[\begin{array}{l} 1729.0 \\ {[68.07]} \end{array}\right]$	$\left\|\begin{array}{l} 1701.6 \\ {[66.99]} \end{array}\right\|$	-	-
H3	$\begin{aligned} & 700.0 \\ & {[27.56]} \end{aligned}$	$\begin{array}{r} 1745.0 \\ {[68.70]} \end{array}$	$\begin{gathered} 404.0 \\ {[15.91]} \\ \hline \end{gathered}$	$\begin{gathered} 630.0 \\ {[24.80]} \end{gathered}$	$\begin{array}{\|c\|} \hline 500.0 \\ {[19.69]} \end{array}$	$\begin{gathered} 630.0 \\ {[24.80]} \\ \hline \end{gathered}$	$\begin{array}{r} 760.0 \\ {[29.92]} \\ \hline \end{array}$	$\begin{aligned} & 800.0 \\ & {[31.5]} \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1729.0 \\ & {[68.07]} \end{aligned}$	$\begin{array}{\|l\|} 1701.6 \\ {[66.99]} \\ \hline \end{array}$	-	-
Frame	H5	D1	D2	D3	D4	D5	D6	S1	S2	S3	Ф1	Ф2	Ф3
H1		$\begin{gathered} \hline 45.0 \\ {[1.77]} \end{gathered}$	-	-	-	-	-	$\begin{gathered} \hline 13.0 \\ {[0.51]} \end{gathered}$	$\begin{array}{\|c\|} \hline 26.5 \\ {[1.04]} \end{array}$	$\begin{array}{\|c\|} \hline 25.0 \\ {[0.98]} \end{array}$	-	-	-
H2		$\begin{gathered} 51.0 \\ {[2.00]} \\ \hline \end{gathered}$	$\begin{gathered} 38.0 \\ {[1.50]} \\ \hline \end{gathered}$	$\begin{gathered} 65.0 \\ {[2.56]} \\ \hline \end{gathered}$	$\begin{aligned} & 204.0 \\ & {[8.03]} \\ & \hline \end{aligned}$	$\begin{gathered} 68.0 \\ {[2.68]} \\ \hline \end{gathered}$	$\begin{aligned} & 137.0 \\ & {[5.40]} \\ & \hline \end{aligned}$	$\begin{gathered} 13.0 \\ {[0.51]} \end{gathered}$	$\begin{gathered} 26.5 \\ {[1.04]} \\ \hline \end{gathered}$	$\begin{gathered} 25.0 \\ {[0.98]} \\ \hline \end{gathered}$		-	
H3		$\begin{gathered} 51.0 \\ {[2.00]} \end{gathered}$	$\begin{gathered} 38.0 \\ {[1.50]} \end{gathered}$	$\begin{array}{\|c\|} \hline 65.0 \\ {[2.56]} \end{array}$	$\begin{aligned} & 204.0 \\ & {[8.03]} \end{aligned}$	$\begin{array}{\|c\|} \hline 68.0 \\ {[2.68]} \\ \hline \end{array}$	$\begin{aligned} & 137.0 \\ & {[5.40]} \end{aligned}$	$\begin{gathered} 13.0 \\ {[0.51]} \end{gathered}$	$\begin{array}{\|c\|} \hline 26.5 \\ {[1.04]} \end{array}$	$\begin{array}{\|c} 25.0 \\ {[0.98]} \end{array}$	$\begin{gathered} 22.0 \\ {[0.87]} \end{gathered}$	$\begin{gathered} 34.0 \\ {[1.34]} \end{gathered}$	$\begin{aligned} & \hline 117.5 \\ & {[4.63]} \\ & \hline \end{aligned}$

Digital Keypad
KPC-CC01

02 Installation

The appearances shown in the following figures are for reference only.
Airflow direction: \longleftarrow (Blue arrow) inflow \longleftarrow (Red arrow) outflow

Multiple drives side-by-side installation in rows (Frame A,B,C)

Ta: Frame A~G Ta*: Frame H

For installation in rows, it is recommended installing a barrier between the drives. Adjust the size/depth of the barrier till the temperature measured at the fan's inflow side is lower than the operation temperature. Operation temperature is the defined as the temperature measured 50mm away from the fan's inflow side. (As shown in the figure below)

Minimum mounting clearance

Frame	$\mathrm{A}(\mathrm{mm})$	$\mathrm{B}(\mathrm{mm})$	$\mathrm{C}(\mathrm{mm})$	$\mathrm{D}(\mathrm{mm})$
A~C	60	30	10	0
D0, $, \mathrm{E}, \mathrm{F}$	100	50	-	0
G	200	100	-	0
H	350	0	0	$200\left(100, \mathrm{Ta}=40^{\circ} \mathrm{C}\right)$

Frame A VFD007CP23A-21; VFD007CP43A/4EA-21; VFD015CP23A-21; VFD015CP43B/4EB-21; VFD022CP23A-21; VFD022CP43B/4EB-21; VFD037CP23A-21; VFD037CP43B/4EB-21; VFD040C43A/4EA-21; VFD055CP23A-21; VFD055CP43B/4EB-21; VFD075CP43B/4EB-21
Frame B VFD075CP23A-21; VFD110CP23A-21; VFD110CP43B/4EB -21; VFD150CP23A-21; VFD150CP43B/4EB -21; VFD185CP43B/4EB -21
Frame C VFD185CP23A-21; VFD220CP23A-21; VFD220CP43A/4EA -21; VFD300CP23A-21; VFD300CP43B/4EB -21; VFD370CP43B/4EB -21
FrameD0 VFD370CP23A-00/23A-21; VFD450CP23A-00/23A-21; VFD450CP43A-00/43A-21;
\& D VFD550CP43A-00/43A-21; VFD750CP43B-00/43B-21; VFD900CP43A-00/43A-21; VFD450CP43S-00/43S21; VFD550CP43S-00/43S21
Frame E VFD550CP23A-00/23A-21; VFD750CP23A-00/23A-21; VFD900CP23A-00/23A-21; VFD1100CP43A-00/43A-21; VFD1320CP43B-00/43B-21;
Frame F VFD1600CP43A-00/43A-21; VFD1850CP43B-00/43B-21
Frame G VFD2200CP43A-00/43A-21; VFD2800CP43A-00/43A-21
Frame H VFD3150CP43A-00/43C-00/43C-21; VFD3550CP43A-00/43C-00/43C-21; VFD4000CP43A-00/43C-00/43C-21

1. It is the minimum distance required for frame $A \sim D$. If drives are installed closer than the minimum mounting clearance, the fan may not function properly.

Air flow rate for cooling							Power Dissipation		
	Flow Rate (cfm)			Flow Rate ($\mathrm{m}^{3} / \mathrm{hr}$)			Power Dissipation (watt)		
Model No.	External	Internal	Total	I External	Internal	Total	$\begin{array}{\|c\|} \hline \text { Loss } \\ \text { External } \\ \text { (Heat } \\ \text { Sink) } \\ \hline \end{array}$	Internal	Total
VFD007CP23A-21	-	-	-	-	-	-	40	31	71
VFD015CP23A-21	-	-	-	-	-	-	61	39	100
VFD022CP23A-21	14	-	14	24	-	24	81	45	126
VFD037CP23A-21	14	-	14	24	-	24	127	57	184
VFD055CP23A-21	10	-	10	17	-	17	158	93	251
VFD075CP23A-21	40	14	54	68	24	92	291	101	392
VFD110CP23A-21	66	14	80	112	24	136	403	162	565
VFD150CP23A-21	58	14	73	99	24	124	570	157	727
VFD185CP23A-21	166	12	178	282	20	302	622	218	840
VFD220CP23A-21	166	12	178	282	20	302	777	197	974
VFD300CP23A-21	146	12	158	248	20	268	878	222	1100
VFD370CP23A-00/23A-21	179	30	209	304	51	355	1271	311	1582
VFD450CP23A-00/23A-21	179	30	209	304	51	355	1550	335	1885
VFD550CP23A-00/23A-21	228	73	301	387	124	511	1762	489	2251
VFD750CP23A-00/23A-21	228	73	301	387	124	511	2020	574	2594
VFD900CP23A-00/23A-21	246	73	319	418	124	542	2442	584	3026
VFD007CP43A/4EA-21	-	-	-	-	-	-	35	32	67
VFD015CP43B/4EB-21	-	-	-	-	-	-	44	31	75

Air flow rate for cooling							Power Dissipation		
VFD022CP43B/4EB-21		-					58	43	101
VFD037CP43B/4EB-21	14	-	14	24	-	24	92	60	152
VFD040CP43A/4EA-21	10	-	10	17	-	17	124	81	205
VFD055CP43B/4EB-21	10	-	10	17	-	17	135	99	234
VFD075CP43B/4EB-21	10	-	10	17	-	17	165	98	263
VFD110CP43B/4EB-21	40	14	54	68	24	92	275	164	439
VFD150CP43B/4EB-21	66	14	80	112	24	136	370	194	564
VFD185CP43B/4EB-21	58	14	73	99	24	124	459	192	651
VFD220CP43A/4EA-21	99	21	120	168	36	204	455	358	813
VFD300CP43B/4EB-21	99	21	120	168	36	204	609	363	972
VFD370CP43B/4EB-21	126	21	147	214	36	250	845	405	1250
VFD450CP43S-00/43S-21 VFD450CP43A-00/43A-21	179	30	209	304	51	355	1056	459	1515
VFD550CP43S-00/43S-21 VFD550CP43A-00/43A-21	179	30	209	304	51	355	1163	669	1832
VFD750CP43B-00/43B-21	179	30	209	304	51	355	1639	657	2296
VFD900CP43A-00/43A-21	186	30	216	316	51	367	1787	955	2742
VFD1100CP43A-00/43A-21	257	73	330	437	124	561	2112	1084	3196
VFD1320CP43B-00/43B-21	223	73	296	379	124	503	2417	1157	3574
VFD1600CP43A-00/43A-21	224	112	336	381	190	571	3269	1235	4504
VFD1850CP43B-00/43B-21	289	112	401	491	190	681	3632	1351	4983
VFD2200CP43A-00/43A-21			454			771			6358
VFD2800CP43A-00/43A-21			454			771			7325
VFD3150CP43A-00/43C-00/43C-21			769			1307			8513
VFD3550CP43A-00/43C-00/43C-21			769			1307			9440
VFD4000CP43A-00/43C-00/43C-21			769			1307			10642
※ The required airflow shown in chart is for installing single drive in a confined space. * When installing the multiple drives, the required air volume should be the required air volume for single drive X the number of the drives.							The heat dissipation shown in the chart is for installing single drive in a confined space. * When installing the multiple drives, volume of heat dissipation should be the heat dissipated for single drive X the number of the drives. Heat dissipation for each model is calculated by rated voltage, current and default carrier.		

03 Unpacking

The AC motor drive should be kept in the shipping carton or crate before installation. In order to retain the warranty coverage, the AC motor drive should be stored properly when it is not to be used for an extended period of time.

The AC motor drive is packed in the crate. Follows the following step for unpack:
Frame D
Crate 01 (VFDXXXCPXXX-00)
Loosen the 12 cover screws to open the

Remove the EPEs and manual.

Loosen the 8 screws that fastened on the pallet, remove the wooden plate.

Lift the drive by hooking the lifting hole. It is now ready for installation.

Loosen the 10 screws on the pallet, remove the wooden plate.

Lift the drive by hooking the lifting hole. It is now ready for installation.

Frame E

Crate 01 (VFDXXXXCPXXX-00)
Loosen the 4 screws on the iron plates. There are 4 iron plates and in total of 16 screws.

Crate 02 (VFDXXXXCPXXX-21)
Loosen the 4 screws on the iron plates. There are 4 iron plates and in total of 16 screws.

Remove the crate cover, EPEs and manual.

Frame F
Crate 01 (VFDXXXXCPXXX-00)
Crate 02 (VFDXXXXCPXXX-21)
Remove the 6 clips on the side of the crate with a flat-head screwdriver. (As shown in figure below.)

Remove the 6 clips on the side of the crate with a flat-head screwdriver. (As shown in figure below.)
Remove the crate cover, EPEs and manual.

Lift the drive by hooking the lifting hole. It is now ready for installation.

Lift the drive by hooking the lifting hole. It is now ready for installation.

Frame G

Loosen the 5 screws as shown in following figure: Loosen the 9 screws and remove the wooden plate.

Frame H

Loosen the 6 screws on the top then remove 6 metal washers and 6 plastic washers as shown in figure below.

Loosen the 6 screws on the top then remove 6 metal washers and 6 plastic washers as shown in figure below.

Lift the drive by hooking the lifting hole. It is now ready for installation.

Loosen 6 of the M6 screws on the side and remove the 2 plates, as shown in below. The removed screws and plates can be used to secure the AC motor drive from the external.

Secure the drive from the external. (Skip to the next step if it is not necessary in your case.)
Loosen 8 of M8 screws on the both sides and place the 2 plates that were removed from the last step. Fix the plates to AC motor drive by fasten 8 of the M8 screws. (As shown in below)
Torque: 150~180kg-cm (130.20~156.24lb-in.)

Lift the drive by hooking the lifting hole. It is now ready for installation.

Frame H

Crate 03 (VFDXXXXCPXXC-21)
Use flathead screwdriver to remove the clips on the side of the crate, 8 clips in total.

Remove the crate cover, EPEs, rubber and manual.

Loosen the 6 screws on the cover, remove 6 metal washers and 6 plastic washers as shown in below:

Loosen 6 of the M6 screws on the side and removes the 2 plates, as shown in following figure. The removed screws and plates can be used to secure AC motor drive from the external.

Secure the drive from the internal.

Loosen 18 of the M6 screws and remove the top cover as shown in figure 2. Mount the cover (figure 1) back to the drive by fasten the M6 screws to the two sides of the drive, as shown in figure 2.
Torque: $35 \sim 45 \mathrm{~kg}-\mathrm{cm}(30.38 \sim 39.06 \mathrm{lb}-\mathrm{in}$.

Figure 1
Top cover (Use M12 screws)

Secure the drive from the external.

Loosen 8 of the M8 screws on the both sides and place the 2 plates that were removed from the last step. Fix the plates to rive by fasten 8 of the M8 screws. (As shown in figure below).

Torque: 150~180kg-cm (130.20~156.24lb-in.)

Figure 2

Fasten 6 of the M6 screws that were removed from last step back to the AC motor drive. As shown in figure below:

Lift the drive by hooking the lifting hole. It is now ready for installation.

Frame H: Secure the drive
(VFDXXXXCPXXA-00) Screw: M12*6; Torque: 340-420kg-cm [295.1-364.6lb-in.]

VFDXXXXCPXXC-00

Secure the drive from internal.

Screw: M12*8
Torque: 340-420kg-cm [295.1-364.6lb-in.]

VFDXXXXCPXXC-21

Secure the drive from the external.
Screw: M12*8
Torque: 340-420kg-cm [295.1-364.6lb-in.]

The Lifting Hook

The arrows indicate the lifting holes, as in figure below: (Frame D~H).

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Ensure the lifting hook properly goes through the lifting hole, as shown in the following diagram. (Applicable for Frame D~G)

(Applicable to Frame H)

Ensure the angle between the lifting holes and the lifting device is within the specification, as shown in the following diagram.

(Applicable to Frame H)

Weight

VFDXXXCPXXX-00
D $37.6 \mathrm{~kg}(82.9 \mathrm{lbs}$.

VFDXXXXCPXXX-00
E $63.6 \mathrm{~kg}(140.2 \mathrm{lbs}$.

VFDXXXXCPXXX-21 F 88kg(193.8 lbs.)

VFDXXXXCPXXA-00 $\quad 130 \mathrm{~kg}(286.5 \mathrm{lbs}$.
VFDXXXXCPXXA-21 G 138kg(303.9 lbs)

H1: VFD3150CP43A-00; VFD3550CP43A-00; VFD4000CP43A-00; 235kg (518.1lbs)

(I)
(1)

H2: VFD3150CP43C-00; VFD3550CP43C-00; VFD4000CP43C-00; 257kg (566.6lbs)

H3: VFD3150CP43C-21; VFD3550CP43C-21; VFD4000CP43C-21; 263kg (579.8lbs)

04 Wiring

Do not connect any inlet phase capacitor nor automatic power factor regulator (APFR) directly to the VFD.
But if it is necessary to connect any of them, make sure a reactor is installed between the VFD and inlet phase capacitor/APFR

Wiring Diagram for Frame D

Do not connect any inlet phase capacitor nor automatic power factor regulator (APFR) directly to the VFD.
But if it is necessary to connect any of them, make sure a reactor is installed between the VFD and inlet phase capacitor/APFR

Wiring diagram for frame E and above

3-phase power is provided

Do not connect any inlet phase capacitor nor automatic power factor regulator (APFR) directly to the VFD.
But if it is necessary to connect any of them, make sure a reactor is installed between the VFD and inlet phase capacitor/APFR

Figure 1

Figure 2
SINK (NPN) /SOURCE (PNP) Mode

Figure 3
Frame $\mathrm{E} \sim \mathrm{H}$, remove terminal r and terminal s before using DC-Link. (As circled in dotted line, uninstall the gray section and properly store cable r and cable s. Cable r and cable s are not available in optional accessories, do not dispose them.)

05 Main Circuit Terminal

Figure 01: Main Circuit Terminal of Frame A ~ C

Figure 02: Main Circuit Terminal of Frame D
Wiring Diagram for Frame D
3 - phase power is provided

Figure 03: Main Circuit Terminal of Frame E and above

Wiring diagram for frame E and above

3-phase power is provided

Terminals	Descriptions
R/L1, S/L2, T/L3	AC line input terminals 3-phase
U/T1, V/T2, W/T3	AC drive output terminals for connecting 3-phase induction motor
+1, +2	Applicable to frame A~C Connections for DC reactor to improve the power factor. It needs to remove the jumper for installation.
+1/DC+, -/DC-	Connections for brake unit (VFDB series) (for 230 V models: $\leqq 22 \mathrm{~kW}$, built-in brake unit) (for 460 V models: $\leqq 30 \mathrm{~kW}$, built-in brake unit) Common DC Bus When connecting DC+ and DC-, please follow the required wired gauge in CP2000 user manual. But when connecting DC+ and DC- to brake modules, please follow VFDB Instrutcion Sheet. Download VFDB Instruction Sheet Brake Modules, English version
B1, B2	Connections for brake resistor (optional)
\bigcirc	Earth connection, please comply with local regulations.
	Main power terminals \checkmark Do not connect 3-phase model to one-phase power. It is unnecessary to consider phase-sequence for these terminals R/L1, S/L2 and T/L3. $\boxtimes \quad$ It is recommended to add a magnetic contactor (MC) in the power input wiring to cut off power quickly and reduce malfunction when activating the protection function of the AC motor drive. Both ends of the MC should have an R-C surge absorber. $\checkmark \quad$ Please make sure to fasten the screw of the main circuit terminals to prevent sparks which is made by the loose screws due to vibration. $\square \quad$ Please use voltage and current within the specification. $\square \quad$ When using a general GFCI (Ground Fault Circuit Interrupter), select a current sensor with sensitivity of 200mA or above and not less than 0.1 -second operation time to avoid nuisance tripping. $\square \quad$ Please use the shield wire or tube for the power wiring and ground the two ends of the shield wire or tube. $\checkmark \quad$ Do NOT run/stop AC motor drives by turning the power ON/OFF. Run/stop AC motor drives by RUN/STOP command via control terminals or keypad. If you still need to run/stop AC motor drives by turning power ON/OFF, it is recommended to do so only ONCE per hour.
	Output terminals for main circuit
	$\square \quad$ When it needs to install the filter at the output side of terminals U/T1, V/T2, W/T3 on the AC motor drive. Please use inductance filter. Do not use phase-compensation capacitors or L-C (Inductance-Capacitance) or

R-C (Resistance-Capacitance), unless approved by Delta.
\boxtimes DO NOT connect phase-compensation capacitors or surge absorbers at the output terminals of AC motor drives.
ஏ Use well-insulated motor, suitable for inverter operation.
Terminals for connecting DC reactor, external brake resistor, external brake resistor and DC circuit
$\boxtimes \quad$ This is the terminals used to connect the DC reactor to improve the power factor. For the factory setting, it connects the short-circuit object. Please remove this short-circuit object before connecting to the DC reactor.

च Connect a brake resistor or brake unit in applications with frequent deceleration ramps, short deceleration time, too low brake torque or requiring increased brake torque.

$\boxtimes \quad$ The external brake resistor should connect to the terminals (B1, B2) of AC motor drives.

V For those models without built-in brake resistor, please connect external brake unit and brake resistor (both of them are optional) to increase brake torque.
V When the terminals $+1,+2$ and - are not used, please leave the terminals open.

■ DO NOT connect [+1, -], [+2, -], [+1/DC+, -/DC-] or brake resistor directly to prevent drive damage.

Specifications of the Main Circuit Terminals

Frame A

Frame B

Main Circuit Terminals: :
R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, ©, B1, B2, +1, +2,-

\left.| Model | Max. Wire |
| :--- | :--- | :--- | :--- |
| | Gauge |$\right)$ Min. Wire Gauge | Torque($\pm 10 \%)$ |
| :---: |

Main Circuit Terminals:
R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, ©, B1, B2, +1, +2,-

Model	Max. Wire	Min. Wire Gauge	Torque $\pm 10 \%)$
	Gauge		

UL installations must use $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$ wire. Use copper wire only.

I曰, NOTE

Terminal D+ [+2 \& +1]: Torque: $45 \mathrm{~kg}-\mathrm{cm}[39.0 \mathrm{lb}-\mathrm{in}$.$] (4.415 \mathrm{Nm}$) ($\pm 10 \%$)
VFD150CP23A-21 must use $600 \mathrm{~V}, 90^{\circ} \mathrm{C}$ wire when surrounding temperature exceeds $45^{\circ} \mathrm{C}$.

Frame C

Frame D

Main circuit terminals:
R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, © , B1, B2, +1, +2,-

Model	Max. Wire Gauge	Min. Wire Gauge	Torque($\pm 10 \%$)
VFD185CP23A -21	1/0 AWG $\left(53.5 \mathrm{~mm}^{2}\right)$	1 AWG (42.4mm ${ }^{2}$)	$\begin{gathered} \text { M8 } \\ 80 \mathrm{~kg}-\mathrm{cm} \\ (69.4 \mathrm{lb}-\mathrm{in} .) \\ (7.85 \mathrm{Nm}) \end{gathered}$
VFD220CP23A-21		1/0 AWG ($53.5 \mathrm{~mm}^{2}$)	
VFD300CP23A-21		1/0 AWG ($53.5 \mathrm{~mm}^{2}$)	
VFD220CP43A-21		4 AWG ($21.2 \mathrm{~mm}^{2}$)	
VFD300CP43B-21		3 AWG ($26.7 \mathrm{~mm}^{2}$)	
VFD370CP43B-21		2 AWG ($33.6 \mathrm{~mm}^{2}$)	
VFD220CP4EA-21		4 AWG ($21.2 \mathrm{~mm}^{2}$)	
VFD300CP4EB-21		3 AWG ($26.7 \mathrm{~mm}^{2}$)	
VFD370CP4EA-21		2 AWG (33.6mm ${ }^{\text {) }}$	

UL installations must use $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$ wire. Use copper wire only.

NOTE

Terminal D+ [+2 \& +1]: Torque: $90 \mathrm{~kg}-\mathrm{cm}$ [78.2lb-in.] (8.83Nm) ($\pm 10 \%$)
VFD300CP23A-21 must use $600 \mathrm{~V}, 90^{\circ} \mathrm{C}$ wire when surrounding temperature exceeds $45^{\circ} \mathrm{C}$
Main Circuit Terminals:
R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, $\Theta,+1 / D C+,-/ D C-$

Model	Max. Wire Gauge	Min. Wire Gauge	Torque($\pm 10 \%$)
VFD370CP23A-00	$\begin{gathered} 300 \mathrm{MCM} \\ \left(152 \mathrm{~mm}^{2}\right) \end{gathered}$	4/0 AWG (107mm²)	$\begin{gathered} \text { M8 } \\ 80 \mathrm{~kg}-\mathrm{cm} \\ (173 \mathrm{lb}-\mathrm{in} .) \\ (19.62 \mathrm{Nm}) \end{gathered}$
VFD450CP23A-00		300MCM ($152 \mathrm{~mm}^{2}$)	
VFD450CP43S-00		1/0 AWG ($53.5 \mathrm{~mm}^{2}$)	
VFD450CP43A-00			
$\begin{aligned} & \text { VFD550CP43S-00 } \\ & \text { VFD550CP43A-00 } \end{aligned}$		2/0 AWG (67.4mm ${ }^{2}$)	
VFD750CP43B-00		3/0AWG (85mm ${ }^{2}$)	
VFD900CP43A-00		300MCM $\left(152 \mathrm{~mm}^{2}\right.$)	
VFD370CP23A-21	4/0 AWG (107mm ${ }^{2}$)	4/OAWG(107 mm^{2})	
VFD450CP23A-21		4/0 AWG (107mm²)	
VFD450CP43S-21		1/0 AWG ($53.5 \mathrm{~mm}^{2}$)	
VFD550CP43S-21		2/0 AWG (67.4mm ${ }^{\text {2 }}$)	
VFD550CP43A-21		3/0 AWG (85mm²)	
VFD750CP43B-21		3/0 AWG ($85 \mathrm{~mm}^{2}$) 4/0 AWG ($107 \mathrm{~mm}^{2}$)	

1. UL installations must use $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$ wires. Use copper wire only. VFD450CP23A-21 and VFD900CP43A-21 must use $90^{\circ} \mathrm{C}$ wire
2. Figure 1 shows the terminal specification.
3. Figure 2 shows the specifications of insulated heat shrink tubing that comply with UL (600C, YDPU2).
4. Specification of grounding wire Θ : It needs to be at least as the same size as the Min. Wire Gauge listed above.

Figure 1

Figure 2
Ring lug

Heat Shrink Tube

WIRE

Frame E

Figure01

Main Circuit Terminals:
R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, Θ, +1/DC+, -/DC-

Model	Max. Wire Gauge	Min. Wire Gauge	Torque($\pm 10 \%$)
VFD550CP23A-00	$\begin{gathered} 300 \mathrm{MCM} * 2 \\ \left(152 \mathrm{~mm}^{2 *}\right) \end{gathered}$	$\begin{gathered} \text { 2/0AWG*2 } \\ \left(67.4 \mathrm{~mm}^{2} * 2\right) \end{gathered}$	M8$200 \mathrm{~kg}-\mathrm{cm}$$(173 \mathrm{lb}-\mathrm{in}$.$(19.62 \mathrm{Nm})$
VFD750CP23A-00		$\begin{aligned} & \text { 3/0AWG*2 } \\ & \left(85 \mathrm{~mm}^{2} * 2\right) \end{aligned}$	
VFD900CP23A-00		$\begin{gathered} 4 / 0 \mathrm{AWG} * 2 \\ \left(107 \mathrm{~mm}^{2} * 2\right) \end{gathered}$	
VFD1100CP43A-00		$\begin{gathered} 2 / 0 \mathrm{AWG} * 2 \\ \left(67.4 \mathrm{~mm}^{2} * 2\right) \end{gathered}$	
VFD1320CP43B-00		$\begin{gathered} 2 / 0 \mathrm{AWG}^{2} 2 \\ \left(67.4 \mathrm{~mm}^{2} \times 2\right) \end{gathered}$	
VFD550CP23A-21	$\begin{gathered} 4 / 0 \mathrm{AWG} \star 2 \\ \left(107 \mathrm{~mm}^{2} * 2\right) \end{gathered}$	$\begin{gathered} \text { 2/0AWG*2 } \\ \left(67.4 \mathrm{~mm}^{2 *}\right) \end{gathered}$	
VFD750CP23A-21		$\begin{aligned} & 3 / 0 A W G * 2 \\ & \left(85 \mathrm{~mm}^{2} * 2\right) \end{aligned}$	
VFD900CP23A-21		$\begin{gathered} 4 / 0 \mathrm{AWG} * 2 \\ \left(107 \mathrm{~mm}^{2} * 2\right) \end{gathered}$	
VFD1100CP43A-21		$\begin{gathered} 2 / 0 \mathrm{AWG}^{2} 2 \\ \left(67.4 \mathrm{~mm}^{2} \times 2\right) \end{gathered}$	
VFD1320CP43B-21		$\begin{gathered} 2 / 0 \mathrm{AWG}^{*} 2 \\ \left(67.4 \mathrm{~mm}^{2} * 2\right) \end{gathered}$	

1. UL installations must use $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$ wires. Use copper wire only.
2. Figure 01 shows the specification for ring lug.
3. Specification of grounding wire $\stackrel{\Xi}{=}$: It needs to be at least as the same size as the Min. Wire Gauge listed above. Torque: M8 200kg-cm (173 lb -in.) (19.62 Nm) ($\pm 10 \%$), as shown in Figure 02.
4. Figure 03 shows the specifications of insulated heat shrink tubing that comply with UL (600C, YDPU2).

Figure02

Figure03

Frame F

Main circuit terminals:
R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, +1/DC+, -/DC-

Model	Max. Wire Gauge	Min. Wire Gauge	Torque($\pm 10 \%$)
VFD1600CP43A-00	$\begin{gathered} 300 \mathrm{MCM} * 2 \\ \left(152 \mathrm{~mm}^{2} * 2\right) \end{gathered}$	4/0 AWG*2(107mm ${ }^{2} 2$)	M8 200kg-cm (173 lb-in.) (19.62Nm)
VFD1850CP43B-00		$300 \mathrm{MCM} * 2\left(152 \mathrm{~mm}^{2}\right)$	
VFD1600CP43A-21	$\begin{aligned} & \text { 4/0 AWG*2 } \\ & \left(107 \mathrm{~mm}^{2} * 2\right) \end{aligned}$	4/0AWG*2 (107mm²*2)	
VFD1850CP43B-21		4/0AWG*2 (107mm*4)	

1. VFD1850CP43B-21 installations must use $90^{\circ} \mathrm{C}$ wire.
2. For other model, UL installations must use $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$ wire. Use copper wire only.
3. Specification of grounding wire $\stackrel{*}{\text { : It needs to be at least as the }}$ same size as the Min. Wire Gauge listed above.
Torque: M8 200kg-cm (173 lb-in.) (19.62Nm) ($\pm 10 \%$)
4 Figure 1 shows the specification for ring lug.
5 Figure 2 shows the specifications of insulated heat shrink tubing that comply with UL (600C, YDPU2).

Figure02

Frame G

Main Circuit Terminals:
R/L11, R/L12, S/L2, S/L22, T/L31, T/L32

Model	Max. Wire Gauge	Min. Wire Gauge	Torque($\pm 10 \%$)
VFD2200CP43A-00	$\begin{gathered} \hline 300 \mathrm{MCM}^{*} 4 \\ \left(152 \mathrm{~mm}^{2} * 4\right) \end{gathered}$	$\begin{gathered} \text { 2/0AWG*4 } \\ \left(67.4 \mathrm{~mm}^{2} * 4\right) \end{gathered}$	$\begin{gathered} \text { M8 } \\ 200 \mathrm{~kg}-\mathrm{cm} \\ (173 \mathrm{lb}-\mathrm{in} .) \\ (19.62 \mathrm{Nm}) \end{gathered}$
VFD2800CP43A-00		$\begin{aligned} & 3 / 0 \mathrm{AWG}^{*} 4 \\ & \left(85 \mathrm{~mm}^{2 *} 4\right) \\ & \hline \end{aligned}$	
VFD2200CP43A-21	$\begin{gathered} \hline 300 \mathrm{MCM}^{*} 4 \\ \left(152 \mathrm{~mm}^{*} * 4\right) \end{gathered}$	$\begin{gathered} \text { 2/0AWG*4 } \\ \left(67.4 \mathrm{~mm}^{2} * 4\right) \\ \hline \end{gathered}$	
VFD2800CP43A-21		$\begin{aligned} & 3 / 0 \mathrm{AWG}^{*} 4 \\ & \left(85 \mathrm{~mm}^{2 *} 4\right) \end{aligned}$	

Main Circuit Terminals:
U/T1, V/T2, W/T3, +1/DC+, -/DC-

Model	Max. Wire Gauge	Min. Wire Gauge	Torque($\pm 10 \%$)
VFD2200CP43A-00	$\begin{aligned} & \hline 500 \mathrm{MCM} * 2 \\ & \left(253 \mathrm{~mm}^{2} * 2\right) \end{aligned}$	$\begin{aligned} & 400 \mathrm{M} \mathrm{CM} * 2 \\ & \left(203 \mathrm{~mm}^{2} * 2\right) \end{aligned}$	$\begin{gathered} \mathrm{M} 12 \\ 408 \mathrm{~kg}-\mathrm{cm} \\ (354 \mathrm{lb}-\mathrm{in} .) \\ (40 \mathrm{Nm}) \end{gathered}$
VFD2800CP43A-00		$\begin{aligned} & 500 \mathrm{MCM} * 2 \\ & \left(253 \mathrm{~mm}^{2} * 2\right) \end{aligned}$	
VFD2200CP43A-21	$\begin{aligned} & \hline 500 \mathrm{MCM} * 2 \\ & \left(253 \mathrm{~mm}^{2} * 2\right) \end{aligned}$	$\begin{aligned} & 400 \mathrm{MCM} * 2 \\ & \left(203 \mathrm{~mm}^{2} * 2\right) \end{aligned}$	
VFD2800CP43A-21		$\begin{aligned} & 500 \mathrm{MCM} * 2 \\ & \left(253 \mathrm{~mm}^{2} * 2\right) \end{aligned}$	

1. UL installations must use $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$ wire. Use copper wire only.
2. Figure 1 and Figure 2 show the specification for using ring lug.
3. Specification for grounding wire \fallingdotseq : It needs to be at least as the same size as the Min. Wire Gauge listed above. Torque: M8 $200 \mathrm{~kg}-\mathrm{cm}(173 \mathrm{lb}-\mathrm{in}).(19.62 \mathrm{Nm})(\pm 10 \%)$, as shown in Figure 1.
4. Figure 3 and Figure 4 shows the specification of insulated heat shrink tubing that comply with UL (600C, YDPU2).

Figure01
Figure02
R/L11, R/L12, S/L2, S/L22, T/L31, U/T1, V/T2, W/T3, +1/DC+, -/DCT/L32,

Figure03

Figure04

Frame H

Main circuit terminals:

Model	Max. Wire Gauge	Min. Wire Gauge	Torque $\pm 10 \%$)
VFD3150CP43A-00	$\begin{aligned} & 300 \mathrm{MCM}^{*} 4 \\ & \left(152 \mathrm{~mm}^{2} * 4\right) \end{aligned}$	4/0 AWG*4(107mm ${ }^{2 * 4 \text {) }}$	$\begin{gathered} \text { M8 } \\ 200 \mathrm{~kg}-\mathrm{cm} \\ (173 \mathrm{lb}-\mathrm{in} .) \\ (19.62 \mathrm{Nm}) \end{gathered}$
VFD3550CP43A-00		250MCM*4(127mm $\left.{ }^{2} * 4\right)$	
VFD4000CP43A-00		$300 \mathrm{MCM} * 4\left(152 \mathrm{~mm}^{2 *} 4\right)$	
VFD4000CP43C-00		$300 \mathrm{MCM} * 4\left(152 \mathrm{~mm}^{2} * 4\right)$	
VFD3150CP43C-00		4/0 AWG*4(107mm ${ }^{2 * 4 \text {) }}$	
VFD3550CP43C-00		$250 \mathrm{MCM} * 4\left(127 \mathrm{~mm}^{2} * 4\right)$	
VFD3150CP43C-21		4/0 AWG*4(107mm2*4)	
VFD3550CP43C-21		250MCM*4(127mm2*4)	
VFD4000CP43C-21		300MCM*4(152mm2*4)	

1. UL installations must use $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$ wire. Use copper wire only.
2. Figure 1 shows the specification for using the ring lug.
3. Specification of grounding wire \doteq : $300 \mathrm{MCM} * 4$ [152 $\mathrm{mm}^{2 *} 4$], Torque: M8 $180 \mathrm{~kg}-\mathrm{cm}$ (156 lb -in.) (17.64 Nm) ($\pm 10 \%$), as shown in figure 1.
4. Figure 2 shows the specifications of heat shrink tubing that comply with UL (600C, YDPU2).
Figure01

Figure02

06 Control Circuit Terminal

For multi-function input and output terminal, remove the top cover before wiring
The figures shown in the diagram below are for reference only.
Remove the cover for wiring. Frame A~H

Frame A\&B

Loosen the screws and press the tabs on both sides to remove the cover.
Screw torque: 12~15Kg-cm [10.4~13lb-in.]

Frame C\&D

Screw torque: $12 \sim 15 \mathrm{Kg}-\mathrm{cm}$ [10.4~13lb-in.]

Frame E

Screw torque: $12 \sim 15 \mathrm{Kg}-\mathrm{cm}$ [10.4~13lb-in.] Slightly lift the cover then pull outward for removal.

Frame F

Screw torque: 12~15Kg-cm [10.4~13lb-in.]
Slightly lift the cover then pull outward for removal.

Frame G

Screw torque: 12~15Kg-cm [10.4~13lb-in.]
Slightly lift the cover then pull outward for removal.

Frame H

Screw torque: 14~16Kg-cm [12.15~13.89lb-in.] Slightly lift the cover then pull outward for removal.

Removable Terminal Block

Control Terminal Specifications

Wire Gauge: 26~16AWG ($\left.0.1281-1.318 \mathrm{~mm}^{2}\right)$,
Torque: (A) $5 \mathrm{~kg}-\mathrm{cm}$ [4.31 lb-in.] (0.49 Nm) (As shown in figure above)
(B) $8 \mathrm{~kg}-\mathrm{cm}$ [6.94lb-in.] (0.78 Nm) (As shown in figure above)

Wiring precautions:

- Reserves 5 mm and properly install the wire into the terminal; fasten the installation by a slotted screwdriver. If the wire is stripped, sort the wire before install into the terminal.
- Flathead screwdriver: blade width 3.5 mm , tip thickness 0.6 mm
- In the figure above, the factory setting for S1-SCM is short circuit. The factory setting for $+24 \mathrm{~V}-\mathrm{COM}$ is short circuit and SINK mode (NPN); please refer to Chapter 4 Wiring for more detail.

Terminals	Terminal Function	Factory Setting (NPN mode)
+24V	Digital control signal common (Source)	+24V $\pm 5 \% 200 \mathrm{~mA}$
COM	Digital control signal common (Sink)	Common for multi-function input terminals
FWD	Forward-Stop command	FWD-DCM: ON \rightarrow forward running OFF \rightarrow deceleration to stop
REV	Reverse-Stop command	REV-DCM: ON \rightarrow reverse running OFF \rightarrow deceleration to stop
$\begin{gathered} \text { MI1 } \\ \underset{\text { MI8 }}{2} \end{gathered}$	Multi-function input 1~8	Refer to parameters 02-01~02-08 to program the multi-function inputs MI1~MI8. ON : the activation current is $6.5 \mathrm{~mA} \geqq 11 \mathrm{Vdc}$ OFF: leakage current tolerance is $10 \mu \mathrm{~A} \leqq 11 \mathrm{Vdc}$
DCM	Digital frequency signal common	
RA1	Multi-function relay output 1 (N.O.) a	Resistive Load: 5A(N.O.)/3A(N.C.) 250VAC
RB1	Multi-function relay output 1 (N.C.) b	5A(N.O.)/3A(N.C.) 30VDC

RC1	Multi-function relay common (Relay)	Inductive Load (COS 0.4): 2.0A(N.O.)/1.2A(N.C.) 250VAC
RA2	Multi-function relay output 2 (N.O.) a	2.0A(N.O.)/1.2A(N.C.) 30VDC
RC2	Multi-function relay common (Relay)	These terminals are to output monitoring signals, such as drive is in operation, frequency attained or overload
RA3	Multi-function relay output 3 (N.O.) a	indication.
RC3	Multi-function relay common (Relay)	Note: RA1 has N.O. and N.C.; RA2 and RA3 has N.O. only.
+10V	Potentiometer power supply	Analog frequency setting: +10Vdc 20 mA
AVI1	Analog voltage input	Impedance: 20k Ω Range: 0~20mA/0~10V =0~ Max. Output Frequency (Pr.01-00) AVI switch, factory setting is $0 \sim 10 \mathrm{~V}$
ACl	Analog current input	Impedance: 250Ω Range: $0 \sim 20 \mathrm{~mA} / 0 \sim 10 \mathrm{~V}=0 \sim$ Max. Output Frequency (Pr.01-00) ACI Switch, factory setting is $0 \sim 20 \mathrm{~mA}$
AVI2	Auxiliary analog voltage input	Impedance: $20 \mathrm{k} \Omega$ Range: $0 \sim+10 \mathrm{VDC}=0 \sim$ Max. Output Frequency (Pr.01-00)
AFM1		$0 \sim 10 \mathrm{~V}$ Max. output current 2 mA , Max. load $5 \mathrm{k} \Omega$ -10~10V maximum output current 2 mA , maximum load $5 \mathrm{k} \Omega$ Output current: 2 mA max Resolution: 0~10V corresponds to Max. operation frequency Range: $0 \sim 10 \mathrm{~V} \rightarrow-10 \sim+10 \mathrm{~V}$ AFM 1 Switch, factory setting is $0 \sim 10 \mathrm{~V}$
AFM2		$0 \sim 10 \mathrm{~V}$ Max. output current 2 mA , Max. load $5 \mathrm{k} \Omega$ 0~20mA Max. load 500 Output current: 20mA max Resolution: 0~10V corresponds to Max. operation frequency Range: $0 \sim 10 \mathrm{~V} \rightarrow 0 / 4 \sim 20 \mathrm{~mA}$ AFM 2 Switch, factory setting is $0 \sim 10 \mathrm{~V}$
ACM	Analog Signal Common	Common for analog terminals
S1	Factory setting: short-circuit	

SCM	Power removal safety function for emergency stop.	
SG+		
SG-	Modbus RS-485	
SGND		
RJ45	PIN 1,2,7,8 :Reserved	PIN 3, 6: SGND
	PIN 4: SG-	PIN 5: SG+

* NOTE: Wire size of analog control signals: 18 AWG ($0.75 \mathrm{~mm}^{2}$) with shielded wire

Analog input terminals (AVI 1, ACI, AVI 2, ACM)

$\square \quad$ Analog input signals are easily affected by external noise. Use shielded wiring and keep it as short as possible (less than 20 meters (65.6168 feet)) with proper grounding. If the noise is inductive, connecting the shield to terminal ACM can bring improvement.

V This way of using contacts in a circuit should be able to process weak signals at the bifurcated contacts. Besides, don't use contacts to control the terminal ACM.
च If the analog input signals are affected by noise from the AC motor drive, please connect a capacitor and ferrite core as indicated in the following diagram.

Digital inputs (FWD, REV, MI1~MI8, COM)

\square When using contacts or switches to control the digital inputs, please use high quality components to avoid contact bounce.

Remove the Terminal Block

1. Loosen the screws by screwdriver. (As shown in figure below)

2. Remove the control board by pulling it out for a distance $6 \sim 8 \mathrm{~cm}$ (as 1 in the figure) then lift the control board upward (as 2 in the figure).

07 Optional Components

The components listed in this chapter are optional (not built-in) and available upon request. Installing additional components to your drive would substantially improve its performance. Please select applicable components according to your need or contact the local distributor for suggestions.

List of Optional Components:
> All Brake Resistors and Brake Units Used in AC Motor Drives
> Non-fuse Circuit Breaker
> Fuse (Specification Chart)
> AC Reactor (Choke)
> Zero Phase Reactor (Choke)
> DC Reactor (Choke)
, EMI filter
> Digital Keypad
> Panel Mounting Kit
> Conduit Box Kit
> Fan Kit

- Flange Mounting Kit
- IFD6530: USB/RS-485 Communication Interface

All Brake Resistors and Brake Units Used in AC Motor Drives

230 V

Applicable Moto		${ }^{* 1} 125 \%$ Braking Torque $10 \% \mathrm{ED}$						${ }^{2}$ 2 Max．Braking Torque		
HP	kW	Braking Torque （kg－m）	Brake Unit	${ }^{* 3}$ Braking Resistor series for each Brake Unit		Resistor value		Min	Max．Total	Peak
			${ }^{* 4}$ VFDB			AC motor Drive	Current （A））	Resistor Value（ Ω	Braking Current（A）	Power （kW）
1	0.7	0.5	－	BR080W20	＊＊	80W200ת	1.9	63.3	6	2.3
2	1.5	0.5	－	BR080W20	0＊1	80W200ת	1.9	63.3	6	2.3
3	2.2	1.0	－	BR200W09	1＊1	200W91ת	4.2	47.5	8	3.0
5	3.7	1.5	－	BR300W07	0＊1	300W70ת	5.4	38.0	10	3.8
7.5	5.5	2.5	－	BR400W04	0＊1	400W40ת	9.5	19.0	20	7.6
10	7.5	3.7	－	BR1K0W02	－ 1	1000W20』	19	14.6	26	9.9
15	11	5.1	－	BR1K0W02	0＊1	1000W20』	19	14.6	26	9.9
20	15	7.5	－	BR1K5W01	3＊1	1500W13』	29	13.6	28	10.6
25	18	10.2	－	BR1K0W4P3＊2	$\begin{aligned} & 2 \\ & \text { series } \end{aligned}$	2000W8．6ת	44	8.3	46	17.5
30	22	12.2	－	BR1K0W4P3＊2	$\begin{aligned} & \hline 2 \\ & \text { series } \end{aligned}$	2000W8．6ת	44	8.3	46	17.5
40	30	14.9	－	BR1K5W3P3＊2	$\begin{aligned} & \hline 2 \\ & \text { series } \end{aligned}$	3000W6．6ת	58	5.8	66	25.1
50	37	20.3	2015＊2	BR1K0W5P1＊2	$\begin{array}{\|l\|} \hline 2 \\ \text { series } \\ \hline \end{array}$	4000W5．1 1 R	75	4.8	80	30.4
60	45	25.1	2022＊2	BR1K2W3P9＊2	$\begin{aligned} & 2 \\ & \text { series } \end{aligned}$	4800W3．9 ${ }^{\text {a }}$	97	3.2	120	45.6
75	55	30.5	2022＊2	BR1K5W3P3＊2	$\begin{aligned} & 2 \\ & \text { series } \end{aligned}$	6000W3．3ת	118	3.2	120	45.6
100	75	37.2	2022＊3	BR1K2W3P9＊2	$\begin{aligned} & \hline 2 \\ & \text { series } \end{aligned}$	7200W2．6ת	145	2.1	180	68.4
125	90	50.8	2022＊4	BR1K2W3P9＊2	$\begin{aligned} & 2 \\ & \text { series } \end{aligned}$	$9600 \mathrm{~W} 2 \Omega$	190	1.6	240	91.2

460V

Appli Mo	cable ors	${ }^{1} 125 \%$ Braking Torque 10% ED						${ }^{2}$ 2 Max．Braking Torque		
HP	kW	Braking Torque （kg－m）	Brake Unit VFDB $*^{4}$	${ }^{* 3}$ Braking Resistor series for each Brake Unit		Resistor value spec．for each AC motor Drive	Total Braking Current （A）	Min． Resistor Value（ Ω ）	Max．Total Braking Current（A）	Peak Power （kW）
1	0.75	0.5	－	BR080W	50＊1	80W750』	1	190.0	4	3.0
2	1.5	0.5	－	BR080W	50＊1	80W750	1	190.0	4	3.0
3	2.2	1.0	－	BR200W	60＊1	200W360ת	2.1	126.7	6	4.6
5	3.7	1.5	－	BR300W	50＊1	300W250ת	3	108.6	7	5.3
5	4.0	2.5	－	BR400W	50＊1	400W150	5.1	84.4	9	6.8
7.5	5.5	2.7		BR1K0W	75＊1	1000W75	10.2	54.3	14	10.6
10	7.5	3.7	－	BR1K0W	75＊1	1000W75	10.2	54.3	14	10.6
15	11	5.1	－	BR1K0W	75＊1	1000W75	10.2	47.5	16	12.2
20	15	7.5	－	BR1K5W	43＊1	1500W43，	17.6	42.2	18	13.7
25	18	10.2	－	BR1K0W016＊2	2 series	2000W32ת	24	26.2	29	22.0
30	22	12.2	－	BR1K0W016＊2	2 series	2000W32ת	24	23.0	33	25.1
40	30	14.9	－	BR1K5W013＊2	2 series	3000W26ת	29	23.0	33	25.1
50	37	20.3	－	BR1K0W016＊4	2 parallel， 2 series	4000W16ת	47.5	14.1	54	41.0
60	45	25.1	4045＊1	BR1K2W015＊4	2 parallel， 2 series	4800W15	50	12.7	60	45.6
75	55	30.5	4045＊1	BR1K5W013＊4	2 parallel， 2 series	6000W13，	59	12.7	60	45.6
100	75	37.2	4030＊2	BR1K0W5P1＊4	4 series	8000W 10.2Ω	76	9.5	80	60.8
125	90	50.8	4045＊2	BR1K2W015＊4	2 parallel， 2 series	9600W7．5ת	100	6.3	120	91.2
150	110	60.9	4045＊2	BR1K5W013＊4	$\begin{gathered} 2 \text { parallel, } \\ 2 \text { series } \end{gathered}$	12000W6．5ת	117	6.3	120	91.2
175	132	74.5	4110＊1	BR1K2W015＊10	5 parallel， 2 series	12000W6 6	126	6.0	126	95.8

460V										
Applicable Motors		${ }^{1} 125 \%$ Braking Torque 10\%ED						$*^{2}$ Max. Braking Torque		
HP	kW	Braking Torque (kg-m)	Brake Unit	${ }^{* 3}$ Braking Resis each Bra	or series for Unit	Resistor value spec. for each AC motor Drive	Total Braking Current (A)	Min. Resistor Value (Ω)	Max. Total Braking Current (A)	Peak Power (kW)
215	160	89.4	4160*1	BR1K5W012*12	6 parallel, 2 series	18000W4	190	4.0	190	144.4
250	185	108.3	4160*1	BR1K5W012*12	6 parallel, 2 series	18000W4 ${ }^{\text {a }}$	190	4.0	190	144.4
300	220	125.3	4185*1	BR1K5W012*14	7 parallel, 2 series	21000W3.4ת	225	3.4	225	171.0
375	280	148.9	4110*2	BR1K2W015*10	5 parallel, 2 series	24000W3 3	252	3.0	252	191.5
425	315	189.6	4160*2	BR1K5W012*12	6 parallel, 2 series	$36000 \mathrm{~W} 2 \Omega$	380	2.0	380	288.8
475	355	213.3	4160*2	BR1K5W012*12	6 parallel, 2 series	$36000 \mathrm{~W} 2 \Omega$	380	2.0	380	288.8
536	400	240.3	4185*2	BR1K5W012*14	7 parallel, 2 series	42000W1.7	450	1.7	450	342.0

${ }^{* 1}$ Calculation for 125% braking torque: (kw) ${ }^{*} 125 \%{ }^{*} 0.8$; where 0.8 is motor efficiency.
Because there is a resistor limit of power consumption, the longest operation time for 10% ED is 10 sec (on: $10 \mathrm{sec} /$ off: 90sec).
*2 Please refer to the Brake Performance Curve for "Operation Duration \& ED" vs. "Braking Current".
*3 For heat dissipation, a resistor of 400 W or lower should be fixed to the frame and maintain the surface temperature below $50^{\circ} \mathrm{C}$; a resistor of 1000 W and above should maintain the surface temperature below $350^{\circ} \mathrm{C}$.
${ }^{* 4}$ Please refer to VFDB series Braking Module Instruction for more detail on braking resistor.

\Rightarrow NOTE

1. Definition for Brake Usage ED\%

Explanation: The definition of the brake usage ED (\%) is for assurance of enough time for the brake unit and brake resistor to dissipate away heat generated by braking. When the brake resistor heats up, the resistance would increase with temperature, and brake torque would decrease accordingly. Recommended cycle time is one minute.

For safety concern, install an overload relay (O.L) between the brake unit and the brake resistor together with the magnetic contactor (MC) prior to the drive to protect the drive from abnormal functions. The purpose of installing the thermal overload relay is to protect the brake resistor from damages due to frequent brakes, or caused by brake unit's continuous conductions resulted from unusual high input voltage. Under such circumstance, just turn off the power to prevent damaging the brake resistor.

Note1: When using the AC drive with DC reactor, please refer to wiring diagram in the AC drive user manual for the wiring of terminal $+(P)$ of Braking unit.
Note2: Do NOT wire terminal -(N) to the neutral point of power system.
2. If damage to the drive or other equipment is due to the fact that the brake resistors and brake modules in use are not provided by Delta, the warranty will be void. For optimum performance we recommend to use Delta brake resistors.
3. Please take into consideration the safety of the environment when installing the brake resistors. If the minimum resistance value is to be utilized, consult local dealers for the calculation of Watt figures.
4. When using more than 2 brake units, equivalent resistor value of parallel brake unit can't be less than the value in the column "Minimum Equivalent Resistor Value for Each AC Drive" (the right-most column in the table). Please read the wiring information in the user manual of brake unit thoroughly prior to operation
5. This chart is for normal usage; if the AC motor drive will be applied for frequent braking, it is recommended to enlarge 2~3 times of the Watts.
6. Thermal Relay:

Thermal relay selection is based on its overload capability. A standard braking capacity for CP2000 is 10\%ED (Tripping time $=10 \mathrm{~s}$). The figure below is an example of $460 \mathrm{~V}, 110 \mathrm{kw}$ AC motor drive. It requires the thermal relay to take 260% overload capacity in 10 s (Host starting) and the braking current is 126 A . In this case, user should select a rated 50A thermal relay. The property of each thermal relay may vary among different manufacturer, please read carefully specification provided by the manufacturer.

Non-fuse Circuit Breaker

To comply with UL standard: Per UL 508, paragraph 45.8.4, part a:
The rated current of the breaker shall be $2 \sim 4$ times of the maximum rated input current of $A C$ motor drive.

3-phase 230V	
Model	Recommended non-fuse breaker (A)
VFD007CP23A-21	15
VFD015CP23A-21	20
VFD022CP23A-21	30
VFD037CP23A-21	40
VFD055CP23A-21	50
VFD075CP23A-21	60
VFD110CP23A-21	100
VFD150CP23A-21	125
VFD185CP23A-21	150
VFD220CP23A-21	200
VFD300CP23A-21	225
VFD370CP23A-00/23A-21	250
VFD450CP23A-00/23A-21	300
VFD550CP23A-00/23A-21	400
VFD750CP23A-00/23A-21	450
VFD900CP23A-00/23A-21	600

3-phase 460V	
Model	Recommended non-fuse breaker $(\mathrm{A}))$
VFD007CP43A-21/4EA-21	10
VFD015CP43B-21/4EB-21	10
VFD022CP43B-21/4EB-21	15
VFD040CP43A-21/4EA-21	30
VFD037CP43B-21/4EB-21	25
VFD055CP43B-21/4EB-21	40
VFD075CP43B-21/4EB-21	40
VFD110CP43B-21/4EB-21	50
VFD150CP43B-21/4EB-21	60
VFD185CP43B-21/4EB-21	75
VFD220CP43A-21/4EA-21	100
VFD300CP43B-21/4EB-21	125
VFD370CP43B-21/4EB-21	150
VFD450CP43S-00/S-21	175
VFD450CP43A-00/43A-21	
VFD550CP43S-00/43S-21	250
VFD550CP43A-00/43A-21	
VFD750CP43B-00/43B-21	300
VFD900CP43A-00/43-21	300
VFD1100CP43A-00/43A-21	400
VFD1320CP43B-00/43B-21	500
VFD1600CP43A-00/43A-21	600
VFD1850CP43B-00/43B-21	600
VFD2200CP43A-00/43A-21	800
VFD2800CP43A-00/43A-21	1000
VFD3150CP43A-00/43C-00/43C-21	1200
VFD3550CP43A-00/43C-00/43C-21	1350
VFD4000CP43A-00/43C-00/43C-21	1500

use (Specification Chart)

Fuses with specification smaller than the data in the following table are allowed.

Model 230V	Input Current I(A)		Line Fuse	
	Light duty	Normal duty	I (A)	Bussmann P/N
VFD007CP23A-21	6.4	3.9	15	JJN-15
VFD015CP23A-21	9.6	6.4	20	JJN-20
VFD022CP23A-21	15	12	30	JJN-30
VFD037CP23A-21	22	16	40	JJN-40
VFD055CP23A-21	25	20	50	JJN-50
VFD075CP23A-21	35	28	60	JJN-60
VFD110CP23A-21	50	36	100	JJN-100
VFD150CP23A-21	65	52	125	JJN-125
VFD185CP23A-21	83	72	150	JJN-150
VFD220CP23A-21	100	83	200	JJN-200
VFD300CP23A-21	116	99	225	JJN-225
VFD370CP23A-00/23A-21	146	124	250	JJN-250
VFD450CP23A-00/23A-21	180	143	300	JJN-300
VFD550CP23A-00/23A-21	215	171	400	JJN-400
VFD750CP23A-00/23A-21	276	206	450	JJN-450
VFD900CP23A-00/23A-21	322	245	600	JJN-600

Model 460V	Input current (A)		Line Fuse	
	Light duty	Normal duty	$\mathrm{I}(\mathrm{A})$	Bussmann P/N
VFD007CP43A-21/4EA-21	4.3	3.5	10	JJS-10
VFD015CP43A-21/4EA-21	6.0	4.3	10	JJS-10
VFD022CP43A-21/4EA-21	8.1	5.9	15	JJS-15
VFD037CP43A-21/4EA-21	12.4	8.7	25	JJS-20
VFD040CP43A-21/4EA-21	16	14	30	JJS-20
VFD055CP43A-21/4EA-21	20	15.5	40	JJS-30
VFD075CP43A-21/4EA-21	22	17	40	JJS-40
VFD110CP43A-21/4EA-21	26	20	50	JJS-50
VFD150CP43A-21/4EA-21	35	26	60	JJS-60
VFD185CP43A-21/4EA-21	42	35	75	JJS-75
VFD220CP43A-21/4EA-21	50	40	100	JJS-100
VFD300CP43A-21/4EA-21	66	47	125	JJS-125
VFD370CP43A-21/4EA-21	80	63	150	JJS-150
VFD450CP43S-00/43S-21	91	74	175	JJS-175
VFD450CP43A-00/43A-21				
VFD550CP43S-00/43S-21	110	101	250	JJS-250
VFD550CP43A-00/43A-21				
VFD750CP43A-00/43A-21	150	114	300	JJS-300
VFD900CP43A-00/43A-21	180	157	300	JJS-300
VFD1100CP43A-00/43A-21	220	167	400	JJS-400
VFD1320CP43A-00/43A-21	260	207	500	JJS-500
VFD1600CP43A-00/43A-21	310	240	600	JJS-600
VFD1850CP43A-00/43A-21	370	300	600	JJS-600
VFD2200CP43A-00/43A-21	460	380	800	JJS-800
VFD2800CP43A-00/43A-21	530	400	1000	KTU-1000
VFD3150CP43A-00/43C-00/43C-21	616	494	1200	KTU-1200
VFD3550CP43A-00/43C-00/43C-21	683	555	1350	KTU-1350
VFD4000CP43A-00/43C-00/43C-21	770	625	1500	KTU-1500

Line \& Load AC Reactors (Chokes)

$230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 3$-phase

kW	HP	Nominal Amperes (rms)	Max. continuous amperes (rms)	Inductance (mh) 3~5\%impedance	
				3% of impedance	5\% of impedance
0.75	1	5	15.55635	2.113	3.522
1.5	2	7.5	23.33452	1.409	2.348
2.2	3	10	31.1127	1.057	1.761
3.7	5	15	46.66905	0.704	1.174
5.5	7.5	21	65.33667	0.503	0.839
7.5	10	31	96.44936	0.341	0.568
11	15	46	143.1184	0.230	0.383
15	20	61	189.7875	0.173	0.289
18.5	25	75	233.3452	0.141	0.235
22	30	90	280.0143	0.117	0.196
30	40	105	326.6833	0.101	0.168
37	50	146	454.2454	0.072	0.121
45	60	180	560.0286	0.059	0.098
55	75	215	668.923	0.049	0.082
75	100	276	858.7105	0.038	0.064
90	125	322	1001.829	0.033	0.055

$460 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 3$-phase

				Inductance (mh) 3~5\% of impedance	
kW	HP	Nominal Amperes (rms)	Max. continuous amperes (rms)	3% of impedance	impedance
0.75				9.33381	7.04
1.5	1	3	13.06733	5.03	11.74
2.2	3	3.7	17.11198	3.84	6.39
3.7	5	5	26.44579	2.49	4.14
4	5	7.5	32.66833	2.01	3.35
5.5	7.5	10.5	40.44651	1.63	2.71
7.5	10	12	56.00286	1.17	1.96
11	15	14	74.67048	0.88	1.47
15	20	22.5	99.56063	0.66	1.10
18.5	25	30	118.2283	0.56	0.93
22	30	36	140.0071	0.47	0.78
30	40	45	186.6762	0.35	0.59
37	50	56	227.1227	0.29	0.48
45	60	72	283.1256	0.23	0.39
55	75	91	342.2397	0.19	0.32
75	100	110	466.6905	0.14	0.23
90	125	144	560.0286	0.12	0.20
110	150	180	684.4794	0.10	0.16
132	175	220	808.9302	0.08	0.14
160	215	246	964.4936	0.07	0.11
185	250	310	1151.17	0.06	0.10
220	300	343	1431.184	0.05	0.08
280	375	460	1648.973	0.04	0.07
315	425	630	1916.542	0.03	0.06
355	475	683	2124.997	0.03	0.05
400	536	770	2395.678	0.03	0.05

Zero Phase Reactor (Choke)

RF220X00A

Cable type (Note)	Recommended Wire Size (mm^{2})			Qty.	Wiring Method
	AWG	mm^{2}	Nominal (mm^{2})		
Singlecore	≤ 10	≤ 5.3	≤ 5.5	1	Diagram A
	≤ 2	≤ 33.6	≤ 38	4	Diagram B
Threecore	≤ 12	≤ 3.3	≤ 3.5	1	Diagram A
	≤ 1	≤ 42.4	≤ 50	4	Diagram B

NOTE

600 V insulated cable wire

1. The table above gives approximate wire size for the zero phase reactors but the selection is ultimately governed by the type and the diameter of the cable, i.e. the cable diameter must small enough to go through the center of the zero phase reactor.
2. When wiring, do NOT go through the earth ground wire. It only needs to pass through the motor cable or the power cable.
3. When a long motor cable for output is used, a zero phase reactor may be necessary to reduce the radiated emission.

UNIT: mm(inch)

Diagram A
Please wind each wire around the core for 4 times. The reactor must be placed at the AC motor drive output side as close as possible.

Diagram B

Please put wires through 4 cores in series without winding.

DC Reactor (Choke)

230V DC Reactor (Choke)

Input Voltage	kW	HP	Nominal Amperes (rms)	Max. continuous amperes (rms)	3% of impedance	5% of impedance
$\begin{aligned} & 230 \mathrm{Vac} \\ & 50 / 60 \mathrm{~Hz} \\ & \text { 3-Phase } \end{aligned}$	0.75	1	6.4	15.91	3.146	5.243
	1.5	2	12	29.83	1.678	2.796
	2.2	3	16	39.78	1.258	2.097
	3.7	5	20	49.72	1.007	1.678
	5.5	7.5	28	69.61	0.719	1.198
	7.5	10	36	89.50	0.559	0.932
	11	15	52	129.27	0.387	0.645
	15	20	72	178.99	0.280	0.466
	18.5	25	83	206.34	0.243	0.404
	22	30	99	246.11	0.203	0.339
	30	40	124	308.26	0.162	0.271
	37	50	143	355.50	0.141	0.235

Input Voltage	kW	HP	Nominal Amperes (rms)	Max. continuous amperes (rms)	3% of impedance	5% of impedance
$\begin{aligned} & 460 \mathrm{Vac} \\ & 50 / 60 \mathrm{~Hz} \\ & \text { 3-Phase } \end{aligned}$	0.75	1	4.3	10.69	11.759	9.364
	1.5	2	5.9	14.67	16.134	6.825
	2.2	3	8.7	21.63	23.791	4.628
	3.7	5	14	34.80	38.284	2.876
	4	5	16	39.78	43.754	2.517
	5.5	7.5	17	42.26	46.488	2.369
	7.5	10	20	49.72	54.692	2.013
	11	15	26	64.64	71.100	1.549
	15	20	35	87.01	95.711	1.150
	18.5	25	40	99.44	109.384	1.007
	22	30	47	116.84	128.526	0.857
	30	40	63	156.62	172.280	0.639
	37	50	74	183.96	202.360	0.544

EMI Filter

Model	Corresponding EMI filter	Web site for your reference (PDF files to download)
VFD007CP23A-21; VFD015CP23A-21; VFD022CP23A-21; VFD037CP23A-21;	KMF325A	http://www.dem-uk.com/roxburgh/Data/Product Downloads/KMF325A.pdf KMF325A Three Phase Industrial Mains Filters - High Performance 25 Amps
VFD055C23A-21;	KMF336A	http://www.dem-uk.com/roxburgh/Data/Product Downloads/KMF336A.pdf KMF336A Three Phase Industrial Mains Filters - High Performance 36 Amps
VFD075CP23A-21; VFD110CP23A-21; VFD150CP23A-21;	KMF3100A	http://www.dem-uk.com/roxburgh/Data/Product Downloads/KMF3100A.pdf KMF3100A Three Phase Industrial Mains Filters - High Performance 100 Amps
VFD185CP23A-21; VFD220CP23A-21; VFD300CP23A-21;	$\begin{array}{\|c} \text { KMF3150A+Qty } \\ 2 \text { TOR221 } \end{array}$	http://www.dem-uk.com/roxburgh/Data/Product Downloads/KMF3150Aiss3.pdf KMF3150A Three Phase Industrial Mains Filters - High Performance 150 Amps
VFD370CP23A-00/ 23A-21; VFD450CP23A-00/ 23A-21;	MIF3180	http://www.dem-uk.com/roxburgh/Data/Product Downloads/KMF3180Aiss4.pdf MIF3180 Three Phase Industrial Multi Stage Drive Filters - Very High Performance 180 Amps
VFD550CP23A-00/23A-21; VFD750CP23A-00/23A-21; VFD900CP23A-00/23A-21	MIF3400B	http://www.dem-uk.com/roxburgh/Data/Product Downloads/MIF3400Biss3.PDF MIF3400B Three Phase Industrial Multi Stage Drive Filters - Very High Performance 400 Amps
VFD007CP43A-21/4EA-21; VFD015CP43B-21/4EB-21; VFD022CP43B-21/4EB-21; VFD037CP43B-21/4EB-21;	KMF318A	http://www.dem-uk.com/roxburgh/Data/Product Downloads/KMF318A.pdf KMF318A Three Phase Industrial Mains Filters - High Performance 18 Amps
VFD450CP43S-00/43S-21 VFD550CP43S-00/43S-21 VFD040CP43A-21/4EA-21; VFD055CP43B-21/4EB-21; VFD075CP43B-21/4EB-21;	KMF325A	http://www.dem-uk.com/roxburgh/Data/Product Downloads/KMF325A.pdf KMF325 Three Phase Industrial Mains Filters - General Purpose 25 Amps
VFD110CP43B-21/4EB-21; VFD150CP43B-21/4EB-21; VFD185CP43B-21/4EB-21;	KMF350A	http://www.dem-uk.com/roxburgh/Data/Product Downloads/KMF350A.pdf KMF350A Three Phase Industrial Mains Filters - High Performance 50 Amps
VFD220CP43A-21/4EA-21; VFD300CP43B-21/4EB-21; VFD370CP43B-21/4EB-21;	KMF370A	http://www.dem-uk.com/roxburgh/Data/Product Downloads/KMF3100A.pdf KMF3100A Three Phase Industrial Mains Filters - High Performance 100 Amps
VFD450CP43A-00/43A-21; VFD550CP43A-00/43A-21; VFD750CP43B-00/43B-21; VFD900CP43A-00/43A-21;	MIF3180	http://www.dem-uk.com/roxburgh/Data/Product Downloads/KMF3180Aiss4.pdf MIF3180 Three Phase Industrial Multi Stage Drive Filters - Very High Performance 180 Amps
VFD1100CP43A-00/43A-21; VFD1320CP43B-00/43B-21	MIF3400B	http://www.dem-uk.com/roxburgh/Data/Product Downloads/MIF3400Biss3.PDF MIF3400B Three Phase Industrial Multi Stage Drive Filters - Very High Performance 400 Amps
VFD1600CP43A-00/43A-21; VFD1850CP43B-00/43B-21;	MIF3400B	http://www.dem-uk.com/roxburgh/Data/Product Downloads/MIF3400Biss3.PDF MIF3400B Three Phase Industrial Multi Stage Drive Filters - Very High Performance 400 Amps
VFD2200CP43A-00/43A-21; VFD2800CP43A-00/43A-21;	$\begin{aligned} & \text { MIF3800+Qty3 } \\ & \text { TOR254 } \end{aligned}$	http://www.dem-uk.com/roxburgh/Data/Product Downloads/MIF3800iss2.pdf MIF3800 Three Phase Industrial Drive Filters - Very High Performance 800 Amps
VFD3150CP43A-00/43C-00/43c-21; VFD3550CP43A-00/43C-00/43c-21; VFD4000CP43A-00/43C-00/43c-21;	$\begin{gathered} \text { MIF3800+Qty2 } \\ \text { TOR254 } \end{gathered}$	http://www.dem-uk.com/roxburgh/Data/Product Downloads/MIF3800iss2.pdf MIF3800 Three Phase Industrial Drive Filters - Very High Performance 800 Amps

EMI Filter Installation

Preface

All electrical equipment, including AC motor drives, generates high-frequency/low-frequency noise and interferes with peripheral equipment by radiation or conduction when in normal operation. By using an EMI filter with correct installation, much interference can be eliminated. It is recommended to use DELTA EMI filter to have the best interference elimination performance.

We assure that it can comply with following rules when AC motor drive and EMI filter are installed and wired according to user manual:

1. EN61000-6-4
2. EN61800-3: 1996
3. EN55011 (1991) Class A Group 1

General precaution

To ensure an EMI Filter can maximize its performance on eliminating noise generated by an motor drive, it is not only necessary to follow instruction on installation and wiring in a user manual, but the following points need to be kept in mind. .
\square EMI filter and AC motor drive should be installed on the same metal plate
\square Install AC motor drive on the footprint of the EMI filter or install EMI filter as close as possible to the AC motor drive.
■ Wiring should be as short as possible.
\square Metal plate should be grounded.
\boxtimes The cover of the AC motor drive or grounding should be fixed on the metal plate and their contact area should be as large as possible.

Choose suitable motor \& precautions

Improper installation and choice of motor cable will affect the performance of EMI filter. Be sure to follow exactly precautions listed below when selecting motor cable.
$\boxtimes \quad$ Use a cable with shielding (double shielding is the best).
$\square \quad$ The shielding on both ends of the motor's cable should be grounded with the minimum length and maximum contact area.
$\boxtimes \quad$ Remove any paint on the metal saddle for better ground contact with the metal plate and shielding (See diagram 1).
$\boxtimes \quad$ The shielding of motor's cable should be connected properly to a metal plate. The shielding on both end of the motor's cable should be fixed on a metal plate by a metal saddle. (See diagram 2)

Remove any paint on metal saddle for good ground contact with the plate and shielding.

Diagram 1

Diagram 2

The Length of a motor's cable

1. Drive in full load of cable length
a. Non-shielded cables :

The $5.5 \mathrm{~kW}(7.5 \mathrm{HP})$ model and below, max. cable length between the drive and motor is 328 ft (100m).
The $7.5 \mathrm{~kW}(10 \mathrm{HP})$ model and above is $656 \mathrm{ft}(200 \mathrm{~m})$.
b. Shielded cables :

The $5.5 \mathrm{~kW}(7.5 \mathrm{HP})$ model and below, max. cable length between the drive and motor is 164 ft (50m).
The $7.5 \mathrm{~kW}(10 \mathrm{HP})$ model and above is $328 \mathrm{ft}(100 \mathrm{~m})$.
The cable length longer than the above suggested, 3-phase load reactor is required. Such as insulation level when there are doubts on the used motor, please refer to the 2 nd description
2. Effects of motor insulation class

When motor is driven by an AC motor drive of PWM type, the motor terminals will experience surge voltages easily due to components conversion of AC motor drive and cable capacitance. When the motor cable is very long (especially for the 460 V series), surge voltages may reduce insulation quality. To prevent this situation, please follow the rules below:
a. Use a motor with enhanced insulation
b. Connect an output reactor (optional) to the output terminals of the AC motor drive
c. The length of the cable between AC motor drive and motor should be as short as possible (10 to 20 m or less)

- For models $7.5 \mathrm{hp} / 5.5 \mathrm{~kW}$ and above:

Insulation level of motor	1000 V	1300 V	1600 V
460VAC input voltage	$66 \mathrm{ft}(20 \mathrm{~m})$	$328 \mathrm{ft}(100 \mathrm{~m})$	$1312 \mathrm{ft}(400 \mathrm{~m})$
230VAC input voltage	$1312 \mathrm{ft}(400 \mathrm{~m})$	$1312 \mathrm{ft}(400 \mathrm{~m})$	$1312 \mathrm{ft}(400 \mathrm{~m})$

- For models $5 \mathrm{hp} / 3.7 \mathrm{~kW}$ and less:

Insulation level of motor	1000 V	1300 V	1600 V
460VAC input voltage	$66 \mathrm{ft}(20 \mathrm{~m})$	$165 \mathrm{ft}(50 \mathrm{~m})$	$165 \mathrm{ft}(50 \mathrm{~m})$
230 VAC input voltage	$328 \mathrm{ft}(100 \mathrm{~m})$	$328 \mathrm{ft}(100 \mathrm{~m})$	$328 \mathrm{ft}(100 \mathrm{~m})$

If motor is driven by an AC motor drive of PWM type, the motor terminals will easily experience surge voltages due to components conversion of AC motor drive and cable capacitance. Especially when the motor's cable is very long, surge voltages may reduce insulation quality. To prevent this situation to happen, please consider the following measures:
If the wiring is too long, the amount of stray capacitance between the electrical wires will increase and probably cause leakage of current.
\square Then the display of the current will not be accurate If so, the AC motor drive will activate the over current protection. The worst case caused by leakage of current will be the break down of the AC motor drive.
$\square \quad$ If an AC motor drive is connected to more than one motor, the length of the wiring should be the total length of wiring from the AC motor drive to each motor.
$\boxtimes \quad$ When a thermal O/L relay protected by motor is used between AC motor drive and motor, it may malfunction (especially for 460 V series), even if the length of motor cable is only $165 \mathrm{ft}(50 \mathrm{~m})$ or less. To prevent it, please use AC reactor and/or lower the carrier frequency (Pr. 00-17 PWM carrier frequency).

NOTE

- When a thermal O/L relay protected by motor is used between AC motor drive and motor, it may malfunction (especially for 460 V series), even if the length of motor cable is only $165 \mathrm{ft}(50 \mathrm{~m})$ or less. To prevent it, please use AC reactor and/or lower the carrier frequency (Pr. 00-17 PWM carrier frequency).
- Never connect phase lead capacitors or surge absorbers to the output terminals of the AC motor drive.

Class, Motor Cable Length \& Carrier Frequency Setting for the Filters

	EMC Standard (IEC 61800-3)	Motor Cable length	Carrier frequency
Built-in filter	class C3	non-shielded cable 50 m	default $(8 \mathrm{KHz})$
external DEM filter	class C2	shielded cable 50 m	15 KHz

Digital Keypad

KPC-CE01 digital keypad

A: LED Display

Display frequency, current, voltage and error etc.

Status Indicator

F: Frequency Command
H: Output Frequency
U: User Defined Units
ERR: CAN Error Indicator
RUN: CAN Run Indicator
Function
(Refer to the chart follows for detail description)

Key	Description		
ESC	ESC Key When ESC key is pressed, it will return to the previous menu. It is also functioned as a return key in the sub-menu.		
MENU	Menu Key It can return to the main menu after pressing MENU key. Menu content: 1. Parameter Detail 2. Copy Parameter		
ENTER	ENTER Key Press ENTER and go to the next level. If it is the last level then press ENTER to execute the command.		
HAND	HAND ON Key 1. This key is executed by the parameter settings of the source of Hand frequency and hand operation. The factory settings of both source of Hand frequency and hand operation are the digital keypad.		
AUTO	2. If pressed at stop status, it will switch to Hand setting of frequency source and operation source. If HAND ON key is pressed during operation, it will stop the AC motor drive first then switch to Hand setting.		
3. Hand mode display: H/A LED is ON.			Auto Operation Key
:---			
1. This key is executed by the parameter settings of the source of AUTO frequency and AUTO operation. The			
factory setting is the external terminal (source of operation is 4-20mA).			
2. If auto is pressed in steady status, it will switch to the auto-setting. However if auto key is pressed during			
operation, it will stop AC motor drive first then switch to auto-setting.			

Dimensions: mm [inch]

Panel Mounting Kit (MKC-KPPK)

For MKC-KPPK model, user can choose wall mounting or embedded mounting, protection level is IP56.
Applicable to the digital keypads (KPC-CC01 \& KPC-CE01).

Conduit Box Kit

－outer appearance of conduit box

Frame D0

Applicable Models：
VFD450CP43S－00；VFD550CP43S－00；
VFD450CP43S－21；VFD550CP43S－21

Model name『MKC－D0N1CB』

ITEM	Description	Qty．
1	Screw M5＊0．8＊10L	4
2	Rubber 28	2
3	Rubber 44	2
4	Rubber 73	2
5	Conduit box cover	1
6	Conduit box base	1

ITEM 1

Frame E

Applicable Models：
VFD550CP23A－00；VFD750CP23A－00；VFD900CP23A－00； VFD1100CP43A－00；VFD1320CP43B－00；VFD550CP23A－21； VFD750CP23A－21；VFD900CP23A－21；VFD1100CP43A－21； VFD1320CP43B－21；
Model name『 MKC－EN1CB 』

ITEM	Description	Qty．
1	Screw M5＊0．8＊10L	6
2	Bushing Rubber 28	2
3	Bushing Rubber 44	4
4	Bushing Rubber 100	2
5	Conduit box cover	1
6	Conduit box base	1

Frame D
Applicable Models：
VFD370CP23A－00；VFD450CP23A－00；VFD450CP43A－00；VFD550CP43A－00 VFD750CP43B－00；VFD900CP43A－00；VFD370CP23A－21；VFD450CP23A－21 VFD450CP43A－21；VFD550CP43A－21；VFD750CP43B－21；VFD900CP43A－21

Model name ${ }^{『}$ MKC－DN1CB ${ }_{』}$

ITEM	Description	Qty．
1	Screw M5＊0．8＊10L	4
2	Rubber 28	2
3	Rubber 44	2
4	Rubber 88	2
5	Conduit box cover	1
6	Conduit box base	1

Frame F
Applicable Models：
VFD1600CP43A－00；VFD1850CP43B－00；
VFD1600CP43A－21；VFD1850CP43B－21

Model name『 MKC－FN1CB 』

ITEM	Description	Qty．
1	Screw M5＊0．8＊10L	8
2	Bushing Rubber 28	2
3	Bushing Rubber 44	4
4	Bushing Rubber 100	2
5	Conduit box cover	1
6	Conduit box base	1

Frame G
VFD2200CP43A-00;VFD2800CP43A-00
VFD2200CP43A-21;VFD2800CP43A-21
Model name 『MKC-GN1CB

ITEM	Description	Qty.
1		

1	Screw M5*0.8*10L	12
2	Bushing Rubber 28	2
3	Bushing Rubber 44	2
4	Bushing Rubber 130	3
5	Conduit box base	1
6	Conduit box cover	1

- Installation of conduit box

Frame D

1. Loosen the cover screws and press the tabs on each side of the cover to remove the cover, as shown in the following figure. Screw torque: 10~12kg-cm (8.66~10.39lb-in)

2. Remove the 5 screws shown in the following figure. Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm}(20.8 \sim 22.6 \mathrm{lb}-\mathrm{in})$.

3. Install the conduit box by fasten the 5 screws shown in the following figure.

Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm}$ (20.8~22.6lb-in).

4. Fasten the 2 screws shown in the following figure. Screw torque: $10 \sim 12 \mathrm{~kg}-\mathrm{cm}(8.66 \sim 10.39 \mathrm{lb}-\mathrm{in})$.

Frame E

1. Loosen the 4 cover screws and lift the cover; Screw torque: $12 \sim 15 \mathrm{~kg}-\mathrm{cm}(10.4 \sim 13 \mathrm{lb}-\mathrm{in})$.

2. Fasten the 6 screws shown in the following figure and place the cover back to the original position. Screw torque: $25 \sim 30 \mathrm{~kg}-\mathrm{cm}$ (20.8~30 $\mathrm{lb}-\mathrm{in}$)

3. Fasten the 4 screws shown in the following figure. Screw torque:12~15kg-cm (10.4~13lb-in)』

Frame F

1. Loosen the cover screws and press the tabs on each side of the cover to remove the cover, as shown in the following figure. Screw torque: 14~16kg-cm (12.2~13.9lb-in).

2. Install the conduit box by fastens the 4 screws, as shown in the following figure.

Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm}$ (20.8~22.6 lb-in).

3. Install the conduit box by fasten all the screws shown in the following figure.

Frame G

1. On the conduit box, loosen 7 of the cover screws and remove the cover. On the drive, loosen 4 of the cover screws and press the tabs on each side of the cover to remove the cover, as shown in the following figure. Screw torque: 12~15kg-cm (10.4~13lb-in).

2. Remove the top cover and loosen the screws. Screw torque: 12~15kg-cm (10.4~13Ib-in).

3. Install the conduit box by fastening all the screws shown in the following figure.

Screw torque: $25 \sim 30 \mathrm{~kg}-\mathrm{cm}$ (20.8~30lb-in); Screw torque: 12~15kg-cm (10.4~13lb-in)

4. Fasten all the screws. Screw torque: $25 \sim 30 \mathrm{~kg}-\mathrm{cm}(20.8 \sim 30 \mathrm{lb}-\mathrm{in})$.

5. Place the cover back to the top and fasten the screws (as shown in the figure). Screw torque: 12~15kg-cm (10.4~13lb-in).

an Kit

－outer appearance of fans

Frame A

VFD022CP23A－21
VFD037CP23A－21
VFD055CP23A－21
VFD037CP43B／4EB－21
VFD040CP43A／4EA－21
VFD055CP43B／4EB－21

VFD075CP43B／4EB－21
Frame B
Model『MKC－BFKM1』
VFD075CP23A－21
VFD110CP43B－21
VFD110CP4EB－21

Frame B

VFD110CP23A－21 uses MKC－BFKM2 VFD150CP23A－21 uses MKC－BFKM3 VFD150CP43B－21 uses MKC－BFKM2 VFD150CP4EB－21 uses MKC－BFKM2 VFD185CP43B－21 uses MKC－BFKM2 VFD185CP4EB－21 uses MKC－BFKM2 （MKC－BFKM2 and MKC－BFKM3 have the same look．）

Model『MKC－BFKM2』
Model『MKC－BFKM3』

Frame B

VFD075CP23A－21
VFD110CP23A－21
VFD110CP43B－21
VFD110CP4EB－21
VFD150CP23A－21
VFD150CP43B－21
VFD150CP4EB－21
VFD185CP43B－21
VFD185CP4EB－21
Model『MKC－BFKB 』

Frame C

VFD185CP23A－21
VFD220CP23A－21
VFD300CP23A－21

Frame C
VFD220CP43A-21
VFD20CP4EA-21
VFD300CP43B-21
VFD300CP4EB-21
VFD370CP43B-21
VFD370CP4EB-21
Frame D0
VFD450CP43S-00; VFD550CP43S-00;
VFD450CP43S-21; VFD550CP43S-21
Frame E
VFD550CP23A-00
VFD750CP23A-21
VFD750CP23A-00
VFD750CP23A-21;
VFD900CP23A-00; VFD900CP23A-21;
VFD1100CP43A-00; VFD1100CP43A-21;
VFD1320CP43B-00; VFD1320CP43B-21;
Frame F
VFD1600CP43A-00; VFD1600CP43A-21
VFD1850CP43B-00; VFD1850CP43B-21

- Fan Removal

Frame A
Corresponding models:
VFD022CP23A-21; VFD037CP23A-21; VFD055CP23A-21; VFD037CP43A/4EA-21;
VFD040CP43A/4EA-21; VFD055CP43A/4EA-21; VFD075CP43A/4EA-21

1. As shown by the arrow sign, press the tabs on both side of the fan to remove the fan.

2. As shown by the partially enlarged image below, disconnect the fan's power before removing the fan.

Frame B

Corresponding models:
VFD075CP23A-21; VFD110CP23A-21; VFD110CP43B-21; VFD110CP4EB-21
VFD150CP23A-21; VFD150CP43B-21; VFD150CP4EB-21;
VFD185CP43B-21; VFD185CP4EB-21;

1. As shown by the arrow sign, press the tabs on both side of the fan to remove the fan.

2. As shown by the partially enlarged image below, disconnect the fan' power before removing the fan.

fan.

Frame B\&C

Corresponding models:
Frame B:
VFD075CP23A-21; VFD110CP23A-21; VFD110CP43B-21; VFD110CP4EB-21
VFD150CP23A-21; VFD150CP43B-21; VFD150CP4EB-21
VFD185CP43B-21; VFD185CP4EB-21;
Frame C:
VFD185CP23A-21; VFD220CP23A-21; VFD300CP23A-21; VFD220CP43A-21; VFD220CP4EA-21; VFD300CP43B-21; VFD300CP4EB-21; VFD370CP43B-21; VFD370CP4EB-21

As shown by the partially enlarged image, disconnect the fan's power, then use a screwdriver to unclinch and to remove the fan.

Frame D0
Corresponding models:
VFD450CP43S-00; VFD550CP43S-00; VFD450CP43S-21; VFD550CP43S-2

1. (Figure 1) Loosen screw 1 and screw 2, press the on the right 2. (Figure 2) Loosen screw 3 and screw 4, press the tab on the and the left to remove the cover, follow the direction the arrows right and the left to remove the cover. Screw torque: $6 \sim 8 \mathrm{~kg}-\mathrm{cm}$ indicate. Press on top of digital keypad KPC-CE01 to properly remove the keypad. Screw torque: $10 \sim 12 \mathrm{~kg}-\mathrm{cm}$ (8.6~10.4in-lbf).

Figure 1
3. (Figure 3) Loosen screw 5 and disconnect the fan's power. Screw torque: $10 \sim 12 \mathrm{~kg}-\mathrm{cm}$ (8.6~10.4in-lbf).

Figure 3
(5.2~6.9in-lbf).

Figure 2
4. (Figure 4) Loosen the screws 1~4. Screw torque: 24~26kg-cm (20.8~22.6in-lbf).
5. Disconnect fan's power (as shown in the partially enlarged picture) and pull out the fan (as shown in the larger picture).

Fuigure4

Frame D

Corresponding models:
VFD370CP23A-00; VFD370CP23A-21;
VFD450CP23A-00; VFD450CP23A-21;
VFD450CP43A-00; VFD450CP43A-21;
VFD550CP43A-00; VFD550CP43A-21; VFD750CP43B-00; VFD750CP43B-21; VFD900CP43A-00; VFD900CP43A-21;

1. (Figure 1) Loosen screw 1 and screw 2, press the on the right 2. (Figure 2) Loosen screw 3 and screw 4 , press the tab on the and the left to remove the cover, follow the direction the arrows right and the left to remove the cover. Screw torque: $6 \sim 8 \mathrm{~kg}-\mathrm{cm}$ indicate. Press on top of digital keypad KPC-CE01 to properly remove the keypad. Screw torque: $10 \sim 12 \mathrm{~kg}-\mathrm{cm}$ (8.6~10.4in-lbf).

Figure 1
3. (Figure 3) Loosen screw 5 and disconnect the fan's power. Screw torque: $10 \sim 12 \mathrm{~kg}-\mathrm{cm}(8.6 \sim 10.4 \mathrm{in}-\mathrm{lbf})$.

Figure 3
(5.2~6.9in-lbf).

Figure 2
4. (Figure 4) Loosen the screws 1~4. Screw torque: 24~26kg-cm (20.8~22.6in-lbf).
5. Disconnect fan's power (as shown in the partially enlarged picture) and pull out the fan (as shown in the larger picture).

Frame E

Corresponding models：
VFD550CP23A－00
VFD550CP23A－21
VFD750CP23A－00
VFD750CP23A－21；
VFD900CP23A－00；VFD900CP23A－21；
VFD1100CP43A－00；VFD1100CP43A－21；
VFD1320CP43B－00；VFD1320CP43B－21；

For fan model 『MKC－EFKM1
Loosen screw 1～4（as shown in the figure below），and disconnect the fan＇s power then remove the fan． Screw torque：24～26kg－cm（20．8～22．6in－lbf）．

For fan model 『 MKC－EFKM2 』
Loosen screw 1～4（as shown in the figure below），and disconnect the fan＇s power then remove the fan．
Screw torque：24～26kg－cm（20．8～22．6in－lbf）．

Loosen screw 1 and screw 2 （as shown in the figure below），and disconnect fan＇s power before removing the fan．
Screw torque： $24 \sim 26 \mathrm{~kg}-\mathrm{cm}$（20．8～22．6in－lbf）．

Frame F

Corresponding models：
VFD1600CP43A－00；VFD1600CP43A－21
VFD1850CP43B－00；VFD1850CP43B－21
VFD1600CP43A－00；VFD1600CP43A－21；
VFD1850CP43B－00；VFD1850CP43B－21
For fan model 『MKC－FFKM As shown in the partially enlarged picture，disconnect the fan＇s power before you remove it．
Loosen the screws $1 \sim 4$ and remove the fan（as shown in figure below）．Screw torque： $24 \sim 26 \mathrm{~kg}-\mathrm{cm}\left(20.8 \sim 22.6 \mathrm{lb}-\mathrm{in}_{』}\right.$

For fan model 『MKC－FFKB $』$
（1）Loosen the screws 1～4（as shown in figure below）and remove the cover．Screw torque： $14 \sim 16 \mathrm{~kg}-\mathrm{cm}$ （12．2～13．9lb－in）．

（2）Loosen the screws 5～8（as shown in figure below）and remove the cover．Screw torque： $24 \sim 26 \mathrm{~kg}-\mathrm{cm}(20.8 \sim 22.6 \mathrm{lb}-\mathrm{in})$ ．

(3) As shown in the partially enlarged image, disconnect the fan's power.
(4) Loosen the screws 9~11 (figure 3) and remove the fan (figure 4). Screw torque: 24~26kg-cm (20.8~22.6lb-in)

Figure3

Figure 4

Frame G

Corresponding models：
VFD2200CP43A－00；VFD2200CP43A－21；
VFD2800CP43A－00；VFD2800CP43A－21；
（2）Loosen the screws 1～ 8 （as shown in the figure
（1）Loosen the screws1～4（as shown in figure below）and remove the cover．Screw torque： $24 \sim 26 \mathrm{~kg}-\mathrm{cm}$ （20．8～22．6 lb－in）．

Then loosen screws 9～10（as shown in the figure below）．Then remove the cover．Screw torque： $24 \sim 26 \mathrm{~kg}-\mathrm{cm}$（20．8～22．6Ib－in）

（3）Loosen screws 1～3 and remove snap bushing 4～5 （as shown in the figure below）Screw torque： 15～20kg－cm（12．2～13．9lb－in）』

（4）Hook your index fingers to the two snap bushing holes 1～2（as shown in the figure below），then lift to remove the fan．

Frame H
Corresponding models:
VFD3150CP43A-00; VFD3550CP43A-00; VFD4000CP43A-00;
VFD3150CP43C-00; VFD3550CP43C-00; VFD4000CP43C-00
VFD3150CP43C-21; VFD3550CP43C-21; VFD4000CP43C-21

Model 『MKC-HFKM ${ }_{』}$
(1) Loosen the screws 1~4 and remove the top cover. Screw torque: 14~16kg-cm (12.2~13.9lb-in)

(3) Disconnect the fan's power
(4) Loosen the screws 13~18 and remove the fan. Make sure fan's is properly disconnected before removal. Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm}$ (20.8~22.6lb-in).

Before removing the fan, make sure that you have disconnect the fan's power.

Flange Mounting Kit

Corresponding frames：Frames A～F

Frame A

『 MKC－AFM1』

Corresponding models：VFD022CP23A－21；VFD037CP23A－21；VFD037CP43B－21

『MKC－AFM』

Corresponding models：VFD015CP23A－21；VFD055CP23A－21； VFD007CP43A／4EA－21；VFD015CP43B／4EB－21；VFD022CP43B／4EB－21； VFD040CP43A／4EA－21；VFD055CP43B／4EB－21；VFD075CP43B／4EB－21

Accessories 1＊2 pieces

Screw $1 * 8$ pieces M6＊P 1．0；L＝16mm

Accessories 2＊2 pieces

Panel Cutout Diagrams ［inch］

Unit：mm

Installation of 『MKC－AFM1』
Step1．Install accessory 1 by fastening 4 of the screw 1（M3）．Screw torque： $6 \sim 8 \mathrm{~kg}-\mathrm{cm}(5.21 \sim 6.95 \mathrm{lb}-\mathrm{in})$ ．

Step2．Install accessory 2\＆3 by fastening 2 of the screw 2（M6）．Screw torque：25～30kg－cm（21．7～26．Ib－in）』

Step3．Install accessory $2 \& 3$ by fastening 2 of the screw 2（M6）．Screw torque：25～30kg－cm（21．7～26 lb－in）』

Step4．Plate installation，place 4 of the screw 2 （M6）through accessory $2 \& 3$ and the plate then fasten the screws．Screw torque： $25 \sim 30 \mathrm{~kg}-\mathrm{cm}(5.21 \sim 6.94 \mathrm{lb}-\mathrm{in}) .25 \sim 30 \mathrm{~kg}-\mathrm{cm}(21.7 \sim 26 \mathrm{lb}-\mathrm{in}) 』$

Installation of ${ }^{\text {『 }}$ MKC－AFM』
1．Install accessory $1 \& 2$ by fastening 2 of the screw $1(\mathrm{M} 3)$ ．Screw torque：25～30kg－cm（21．7～26lb－in） （As shown in the figures below）

2．Install accessory $1 \& 2$ by fastening 2 of the screw $1(\mathrm{M} 3) .25 \sim 30 \mathrm{~kg}-\mathrm{cm}(21.7 \sim 26 \mathrm{lb}-\mathrm{in})$ 』（As shown in the figures below）

3．Plate installation，place 4 of the screw 2 （M6）through accessory $1 \& 2$ and the plate then fasten the screws． Screw torque：25～30kg－cm（21．7～26 lb－in）（As shown in the figures below）

Frame B

${ }^{\text {『 }}$ MKC-BFM』

Corresponding models: All Frame B models

Accessories 1*2 pieces

Screw 1 *4 pieces ~ M8*P 1.25
Screw 2*6 pieces \sim M6*P 1.0;
Panel cutout diagram
Unit : mm [inch]

Installation of ${ }^{\text {『 }}$ MKC-BFM』

1. Install accessory 1 \& 2 by fastening 4 of the screw 1 (M8). Screw torque: $40 \sim 45 \mathrm{~kg}-\mathrm{cm}$ ($34.7 \sim 39.0 \mathrm{lb}-\mathrm{in}$). (As shown in the following figure)

2. Plate installation, place 6 of the screw 2 (M6) through accessory $1 \& 2$ and the plate then fasten the screws. Screw torque: $25 \sim 30 \mathrm{~kg}-\mathrm{cm}$ (21.7~26Ib-in). (As shown in the following figure)

Frame C

${ }^{\text {『 }}$ MKC-CFM』

Corresponding models: All Frame C models.

Screw 1*4pce ~ M8*P 1.25;
Screw 2*8 pieces~M6*P 1.0;

Panel cutout diagram [inch]

Installation of ${ }^{\text {『 }}$ MKC-CFM』

1. Install accessory $1 \& 2$ by fastening 4 of the screw 1 (M8). Screw torque: $50 \sim 55 \mathrm{~kg}-\mathrm{cm}$ (43.4~47.7lb-in). (As shown in the figures below)

2. Plate installation, place 8 of the screw 2 (M6) through accessories $1 \& 2$ and the plate then fasten the screws. Screw torque: 25~30kg-cm (21.7~26.0lb-in). (As shown in the figures below)

Frame D
Panel Cutout Diagrams
Unit: mm
[inch]

Frame E
Panel Cutout Diagrams
Unit :mm
[inch]

Installation for Frame D\&E

Step1. Loosen 8 screws and remove Fixture 2 (as shown in the following figure)。

Step5. Fasten 4 screws (as shown in the following figure). Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm}$ (20.8~22.6 lb-in)

Step2. Loosen 10 screws and remove Fixture 1 (as Step6. Fasten 5 screws (as shown in the figure shown in the figure below.)

Step3. Fasten 4 screws (as shown in the figure below). Screw torque: 30~32kg-cm (26.0~27.8lb-in).

below). Screw torque: 24~26kg-cm (20.8~22.6 lb-in).

Step7. Place 4 screws (M10) through Fixture 1\&2 and the plate then fasten the screws. (as shown in the following figure) Screw torque: 200~240kg-cm (173.6~208.3lb-in).

Step4. Fasten 5 screws (as shown in the figure below). Screw torque: 30~32kg-cm (26.0~27.8lb-in).

Frame F

Installation for Frame
Step1. Loosen 12 screws and remove Fixture 2. Step4. Install Fixture 1 by fasten screw $13 \sim 26$ Screw torque: $24 \sim 26 \mathrm{~kg}-\mathrm{cm}$ (20.8~22.6lb-in).

Step5. Place 4 of the M12 screws through Fixture 1\&2 and plate then fasten the screws. Screw torque: $300 \sim 400 \mathrm{~kg}-\mathrm{cm}$ (260~347Ib-in).

Step3. Loosen screw 13~26 and remove Fixture 1.

IFD6530: USB/RS-485 Communication Interface

4
 Warning

\checkmark Please read throughly this instruction sheet before installation and putting it into use.
\checkmark The content of this instruction sheet and the driver file may be revised without prior notice. Please consult our distributors or download the most updated instruction/driver version at http://www.delta.com.tw/product/em/control/cm/control_cm_main.asp

1. Introduction

IFD6530 is a convenient RS-485-to-USB converter, which does not require external power-supply and complex setting process. It supports baud rate from 75 to 115.2 kbps and auto switching direction of data transmission. In addition, it adopts RJ-45 in RS-485 connector for users to wire conveniently. And its tiny dimension, handy use of plug-and-play and hot-swap provide more conveniences for connecting all DELTA IABU products to your PC.

Applicable Models: All DELTA IABU products.

- Application \& Dimension

2. Specification

Power supply	No external power is needed
Power consumption	1.5 W
Isolated voltage	$2,500 \mathrm{VDC}$
Baud rate	$75,150,300,600,1,200,2,400,4,800,9,600,19,200,38,400,57,600,115,200 \mathrm{bps}$
RS-485 connector	RJ-45
USB connector	A type (plug)
Compatibility	Full compliance with USB V2.0 specification
Max. cable length	RS-485 Communication Port: 100 m
Support RS-485 half-duplex transmission	

RJ-45

PIN	Description
1	Reserved
2	Reserved
3	GND
4	SG-

PIN	Description
5	SG+
6	GND
7	Reserved
8	+9 V

3. Preparation before installing the driver

Extract the driver file (IFD6530_Drivers.exe) by following the steps below. You could find driver file (IFD6530_Drivers.exe) in the CD supplied with IFD6530.

Note : Do NOT connect the IFD6530 to a computer before extracting the driver file.

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

You should have a folder marked SiLabs under drive C (c:\SiLabs).

4. Driver Installation

Now connect the IFD6530 to a USB port on your computer. Then follow the steps below to install the driver of IFD6530.

STEP 1

STEP 2

5. LED Display

1. Steady Green LED ON: power is ON.
2. Blinking orange LED: data is transmitting.

08 Installation of the Option Cards (all optional)

Select applicable option cards for your drive or contact local distributor for professional advice. To prevent drive damage during installation, please remove the digital keypad and the cover before wiring. Refer to the instructions below.

Remove cover \& keypad
Frame A, B and C: Screw Torque: 8~10Kg-cm [6.9~8.71b-in.]

Frame DO \& Frame D: \quad Screw Torque: 8~10Kg-cm [6.9~8.71b-in.]

Frame E: Screw Torque: 12~15Kg-cm [10.4~13lb-in.] As shown below, lift the cover then pull to remove it.

Frame F: Screw Torque: 12~15Kg-cm [10.4~13lb-in.] As shown below, lift the cover then pull to remove it.

Frame G: Screw Torque: 12~15Kg-cm [10.4~13lb-in.] As shown below, lift the cover then pull to remove it.

Frame H: Screw Torque: $14 \sim 16 \mathrm{Kg}-\mathrm{cm}$ [12.15~13.89lb-in.]

EMC-D42A

I/O Expansion Card	Terminals	Descriptions
	COM	Common for Multi-function input terminals Select SINK(NPN)/SOURCE (PNP)in J1 jumper / external power supply
	MI10~ MI13	Refer to parameters 02-27~02-30 in Chapter 11 to program the multi-function inputs MI10~MI13. Internal power is applied from terminal E24: $+24 \mathrm{Vdc} \pm 5 \% 200 \mathrm{~mA}$, 5W External power +24VDC: max. voltage 30VDC, min. voltage 19VDC, 30W ON : the activation current is 6.5 mA OFF: leakage current tolerance is $10 \mu \mathrm{~A}$
	MO10~MO11	Multi-function output terminals (photocoupler) Duty-cycle: 50\% Max. output frequency: 100 Hz Max. current: 50 mA Max. voltage: 48 Vdc
	MXM	Common for multi-function output terminals MO10, MO11(photocoupler) Max 48VDC 50mA

EMC-D611A

I/O Expansion Card	Terminals	Descriptions
	AC	AC power Common for multi-function input terminal (Neutral)
	MI9~ MI14	Refer to Pr. 02.26~ Pr. 02.31 in Chapter 11for multi-function input selection
		Input voltage: 100~130VAC
		Input frequency: $57 \sim 63 \mathrm{~Hz}$
		Input impedance: 27Kohm
		Terminal response time:
		ON: 10 ms
		OFF: 20 ms

EMC-R6AA

	Terminals	Descriptions
Relay Expansion Card	RA10 ~ RA15	Refer to Pr. $02.36 \sim$ Pr. 02.46 in Chapter 11 for multi-function output selection Resistive load: $\begin{aligned} & \text { 5A(N.O.)/3A(N.C.) 250VAC } \\ & 5 \mathrm{~A}(\text { N.O. }) / 3 \mathrm{~A}(\text { N.C. }) 30 \mathrm{VDC} \end{aligned}$ Inductive load (COS 0.4) $\begin{aligned} & \text { 2.0A(N.O.)/1.2A(N.C.) 250VAC } \\ & \text { 2.0A(N.O.)/1.2A(N.C.) 30VDC } \end{aligned}$ It is used to output each monitor signal, such as drive is in operation, frequency attained or overload indication.

Screw Specifications for Option Cards' Terminals:

EMC-D42A EMC-D611A EMC-BPS01	Wire Gauge	$24 \sim 12 A W G\left(0.205 \sim 3.31 \mathrm{~mm}^{2}\right)$
	Torque	$4 \mathrm{Kg}-\mathrm{cm}[3.47 \mathrm{lb}-\mathrm{in}]$
	Wire Gauge	$24 \sim 16 \mathrm{AWG}\left(0.205 \sim 1.31 \mathrm{~mm}^{2}\right)$
	Torque	$6 \mathrm{Kg}-\mathrm{cm}[5.21 \mathrm{lb}-\mathrm{in}]$

CMC-MOD01

- Features

1. Supports Modbus TCP protocol
2. MDI/MDI-X auto-detect
3. Baud rate: $10 / 100 \mathrm{Mbps}$ auto-detect
4. E-mail alarm
5. AC motor drive keypad/Ethernet configuration
6. Virtual serial port.

- Product Introduction

(1)	I/O CARD \& Relay Card
(2)	No function
(3)	Comm. Card
(4)	RJ-45 connection port
(5)	Removable control circuit
	terminal

- Specifications

Network Interface

Interface	RJ-45 with Auto MDI/MDIX
Number of ports	1 Port
Transmission method	IEEE 802.3, IEEE 802.3u
Transmission cable	Category 5e shielding 100M
Transmission speed	$10 / 100$ Mbps Auto-Detect
Network protocol	ICMP, IP, TCP, UDP, DHCP, SMTP, MODBUS OVER TCP/IP, Delta Configuration

Electrical specifications

Power supply voltage	5 VDC (provided by the AC drive)
Insulation voltage	2 KV
Power consumption	0.8 W
Weight	25 g

Environment Specifications

Noise Immunity	ESD(IEC 61800-5-1,IEC 6100-4-2)
	EFT(IEC 61800-5-1,IEC 6100-4-4)
	Surge Teat(IEC 61800-5-1,IEC 6100-4-5)
	Conducted Susceptibility Test(IEC 61800-5-1,IEC 6100-4-6)

Operation Storage	Operation : $-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$ (Temperature), 90% (Humidity) Storage : $-25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ (Temperature), 95\% (Humidity)
Shock/Vibration	International Standard: IEC 61800-5-1,IEC 60068-2-6/IEC 61800-5-1,IEC

- Install CMC-MOD01 on VFD-CP2000

1. Switch off the power supply of VFD-CP2000.
2. Open the front cover of VFD-CP2000.
3. Place the insulation spacer into the positioning pin at Slot 1 (shown in Figure 3), and aim the two holes on the PCB at the positioning pin. Press the pin to clip the holes with the PCB (see Figure 4).
4. Screw up at torque $6 \sim 8 \mathrm{~kg}-\mathrm{cm}(5.21 \sim 6.94 \mathrm{in}$-lbs) after the PCB is clipped with the holes (see Figure 5).

- Communication parameter for VFD-CP2000 to connect to an Ethernet

Before VFD-CP2000 is linked to an Ethernet, set up the communication parameters shown in the table below. Then Ethernet master will be able to read/write the frequency characters and control characters from/into VFD-CP2000 after communication parameters are set.

CP2000	Functions	Factory setting	Explanation
$00-20$	Set up source of frequency	0	Frequency command from keypad
$00-21$	Set up source of operation command	5	Operation command from communication card.
$09-30$	Communication decoding method	0	The decoding method for Delta AC Motor Drive (Delta AMD).
$09-75$	IP configuration	0	Static IP(0) / Dynamic IP (DHCP) (1)
$09-76$	IP address-1	192	IP address 192.168.1.5
$09-77$	IP address-2	168	IP address 192.168.1.5
$09-78$	IP address-3	1	IP address 192.168.1.5
$09-79$	IP address-4	5	IP address 192.168.1.5
$09-80$	Net mask-1	255	Net mask 255.255.255.0
$09-81$	Net mask-2	255	Net mask 255.255.255.0
$09-82$	Net mask-3	255	Net mask 255.255.255.0
$09-83$	Net mask-4	0	Net mask 255.255.255.0
$09-84$	Default gateway-1	192	Default gateway 192.168.1.1
$09-85$	Default gateway-2	168	Default gateway 192.168.1.1
$09-86$	Default gateway-3	1	Default gateway 192.168.1.1
$09-87$	Default gateway-4	1	Default gateway 192.168.1.1

- Remove CMC- MOD01 from VFD-CP2000

1. Switch off the power supply of VFD-C2000.
2. Remove the two screws (see Figure 6).
3. Twist opens the card clip and inserts the slot type screwdriver to the hollow to prize the PCB off the card clip (see Figure 7).
4. Twist opens the other card clip to remove the PCB (see Figure 8).

[Figure 6]

[Figure 8]

- Basic Registers

BR number	Property	Content	Explanation
$\# 0$	R	Model name	Set up by the system; read only. The model code of CMC-MOD01=H'0203
$\# 1$	R	Firmware version	Displaying the current firmware version in hex, e.g. H'0100 indicates the firmware version V1.00.
$\# 2$	R	Release date of the version	Displaying the data in decimal form. 10,000s digit and 1,000s digit are for "month"; 100s digit and 10s digit are for "day". For 1 digit: 0 = morning; 1 = afternoon.
$\# 11$	R/W	Modbus Timeout	Preset : 500 (ms)

- LED Indicators \& Troubleshooting

LED Indicators

LED	Status		Indication	Action
	Green	On	Power supply in normal status	No action required
		Off	No power supply	Check if the power supply is plugged.
LINK	On	Network connection in normal status	No action required	
	Green	Flashes	Network in operation	No action required
		Off	Network not connected	Check if the network cable is connected

Troubleshooting

Abnormality	Cause	Action
POWER LED off	AC motor drive not powered	Check if AC motor drive is powered, and if the power supply is normal.
	CMC-MOD01 not connected to AC motor drive	Make sure CMC-MOD01 is connected to AC motor drive.
	CMC-MOD01 not connected to network	Make sure the network cable is correctly connected to network.
	Poor contact to RJ-45 connector	Make sure RJ-45 connector is connected to Ethernet port.
CMC-MOD01 not connected to network	Make sure CMC-MOD01 is connected to network. different networks and blocked by network firewall.	Search by IP or set up relevant settings by AC motor drive keypad.
	CMC-MOD01 not connected to network	Make sure CMC-MOD01 is connected to the network.
	Incorrect communication setting in DCISoft	Make sure the communication setting in DCISoft is set to Ethernet.
	PC and CMC-MOD01 in different networks and blocked by network firewall.	Conduct the setup by AC motor drive keypad.

Chapter 08 Installation of the Option Cards

Abnormality	Cause	Action
Able to open CMC-MOD01 setup page but fail to utilize webpage monitoring	Incorrect network setting in CMC-MOD01	Check if the network setting for CMC-MOD01 is correct. For the Intranet setting in your company, please consult your IT staff. For the Internet setting in your home, please refer to the network setting instruction provided by your ISP.
Fail to send e-mail	Incorrect network setting in CMC-MOD01	Check if the network setting for CMC-MOD01 is correct.
	Incorrect mail server setting	Please confirm the IP address for SMTP-Server.

CMC-PD01

- Features

1. Supports PZD control data exchange.
2. Supports PKW polling AC motor drive parameters.
3. Supports user diagnosis function.
4. Auto-detects baud rates; supports Max. 12Mbps.

- Product Introduction

- Specifications

PROFIBUS DP Communication Connector

Interface	DB9 connector
Transmission method	High-speed RS-485
Transmission cable	Shielded twisted pair anhl 500 VDC Electrical isolation l

Communication

Message type	Data exchange periodically
Module name	CMC-PD01
GSD document	DELTA08DB.GSD
Company ID	08DB(HEX)
Serial transmission speed supported (auto-detection)	Support 9.6kbps; 19.2kbps; 93.75kbps; 187.5kbps; 500kbps; 1.5Mbps; 3Mbps; 6Mbps; (bits per second)

Electrical Specification

Power supply	5 VDC (provided by AC Motor Drive)
Insulation	500 VDC
Power	1 W
Weight	28 g

Environment Specification

Noise immunity	ESD(IEC 61800-5-1,IEC 6100-4-2) EFT(IEC 61800-5-1,IEC 6100-4-4) Surge Teat(IEC 61800-5-1, IEC 6100-4-5) Conducted Susceptibility Test(IEC 61800-5-1,IEC 6100-4-6)
	Operation $:-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$ (Temperature), 90% (Humidity) Storage $:-25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ (Temperature), 95% (Humidity)
	International standardIEC61131-2, IEC68-2-6 (TEST Fc) / IEC61131-2 \& IEC $68-2-27(T E S T ~ E a) ~$

- Installation

PROFIBUS DP Communication Connector: Definition of pins

Pin	Name	Definition
1	-	Not defined
2	-	Not defined
3	Rxd/Txd-P	Sending/receiving data P(B)
4	-	Not defined
5	DGND	Data reference ground
6	VP	Power voltage - positive
7	-	Not defined
8	Rxd/Txd-N	Sending/receiving data N(A)
9	-	Not defined

- LED Indicator and Troubleshooting

There are 2 LED indicators on CMC-PD01. POWER LED displays the status of the working power. NET LED displays the connection status of the communication.

POWER LED

LED status	Indication	Action
Green light on	Power supply in normal status.	No action required
Off	No power	Check if CMC-PD01 and AC motor drive are properly connected.

NET LED

LED status	Indication	Action
Green light on	Normal status	No action required
Red light on	CMC-PD01 is not connected to PROFIBUS DP bus.	Connect CMC-PD01 to PROFIBUS DP bus.
Red light flashes	Invalid PROFIBUS communication address	Set the PROFIBUS address of CMC-PD01 between 1 125 (decimal)
Orange light flashes	CMC-PD01 fails to communication with AC motor drive.	Switch off the power and check whether CMC-PD01 is correctly and normally connected to AC motor drive.

CMC-DN01

- Features

1. Based on the high-speed communication interface of Delta HSSP protocol, able to conduct immediate control to AC motor drive.
2. Supports Group 2 only connection and polling I/O data exchange.
3. For I/O mapping, supports Max. 32 words of input and 32 words of output.
4. Supports EDS file configuration in DeviceNet configuration software.
5. Supports all baud rates on DeviceNet bus: $125 \mathrm{kbps}, 250 \mathrm{kbps}, 500 \mathrm{kbps}$ and extendable serial transmission speed mode.
6. Node address and serial transmission speed can be set up on AC motor drive.
7. Power supplied from AC motor drive.

- Product introduction

1. NS indicator
2. MS indicator
3. POWER indicator
4. Positioning hole
5. DeviceNet connection port
6. Screw fixing hole
7. Fool-proof groove
8. AC motor drive connection
port

- Specifications

DeviceNet Connector

Interface	5 -PIN open removable connector. Of 5.08mm PIN interval
Transmission method	CAN
Transmission cable	Shielded twisted pair cable (with 2 power cables)
Transmission speed	$125 \mathrm{kbps}, 250 \mathrm{kbps}, 500 \mathrm{kbps}$ and extendable serial transmission speed mode
Network protocol	DeviceNet protocol

AC Motor Drive Connection Port

Interface	50 PIN communication terminal
Transmission method	SPI communication
Terminal function	1. Communicating with AC motor drive 2. Transmitting power supply from AC motor drive
Communication protocol	Delta HSSP protocol

Electrical Specifications

Power supply	5 VDC (provided by AC motor drive)
Insulation	500 VDC
Communication	0.85 W
Power	1 W
Weight	23 g

Environmental Specifications

	ESD (IEC 61800-5-1, IEC 6100-4-2) Noise immunity
EFT (IEC 61800-5-1,IEC 6100-4-4) Surge Teat(IEC 61800-5-1, IEC 6100-4-5) Conducted Susceptibility Test (IEC 61800-5-1, IEC 6100-4-6)	
Operation /storage	Operation: $-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$ (temperature), 90\% (humidity), pollution degree 2 Storage: $-25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ (temperature), 95\% (humidity, non-condensing)
Shock / vibration	International standards: IEC61131-2, IEC68-2-6 (TEST Fc)/IEC61131-2 \& IEC $68-2-27 ~(T E S T ~ E a) ~$

DeviceNet Connector: Definition of Pins

PIN	Signal	Color	Definition
1	$\mathrm{~V}+$	Red	DC24V
2	H	White	Signal+
3	S	-	Earth
4	L	Blue	Signal-
5	$\mathrm{~V}-$	Black	OV

- LED Indicator \& Troubleshooting

There are 3 LED indicators on CMC-DN01. POWER LED displays the status of power supply. MS LED and NS LED are dual-color LED, displaying the connection status of the communication and error messages.

POWER LED

LED status	Indication	Action
On	Power supply in abnormal status.	Check the power supply of CMC-DN01.
Off	Power supply in normal status	No action required

NS LED

LED status	Indication	Action
Off	No power supply or CMC-DN01 has not completed MAC ID test yet.	1. Check the power of CMC-DN01 and see if the connection is normal. 2. Make sure at least one or more nodes are on the bus. 3. Check if the serial transmission speed of CMC-DN01 is the same as that of other nodes.
Green light flashes	CMC-DN01 is on-line but has not established connection to the master.	1. Configure CMC-DN01 to the scan list of the master. 2. Re-download the confiaured data to the master.
Green light on	CMC-DN01 is on-line and is normally connected to the master	No action required
Red light flashes	CMC-DN01 is on-line, but I/O connection is timed-out.	1. Check if the network connection is normal. 2. Check if the master operates normally.
Red light on	1. The communication is down. 2. MAC ID test failure. 3. No network power supply. 4. CMC-DN01 is off-line.	1. Make sure all the MAC IDs on the network are not repeated. 2. Check if the network installation is normal. 3. Check if the baud rate of CMC-DN01 is consistent with that of other nodes. 4. Check if the node address of CMC-DN01 is illegal. 5. Check if the network power supply is normal.

MS LED

LED status	Indication	How to correct
Off	No power supply or being off-line	Check the power supply of CMC-DN01 and see of the connection is normal.
Green light flashes	Waiting for I/O data	Switch the master PLC to RUN status
Green light on	I/O data are normal	--
Red light flashes	Mapping error	1. Reconfigure CMC-DN01 2. Re-power AC motor drive
Red light on	Hardware error	1. See the error code displayed on AC motor drive. 2. Send back to the factory for repair if necessary.
Orange light flashes	CMC-DN01 is establishing connection with AC motor drive.	If the flashing lasts for a long time, check if CMC-DN01 and AC motor drive are correctly installed and normally connected to each other.

CMC-EIP01

- Features

1. Supports Modbus TCP and Ethernet/IP protocol
2. MDI/MDI-X auto-detect
3. Baud rate: $10 / 100 \mathrm{Mbps}$ auto-detect
4. AC motor drive keypad/Ethernet configuration
5. Virtual serial port

- Product Introduction

[Figure1]

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection
port
4. LINK indicator
5. RJ-45 connection port
6. POWER indicator
7. Fool-proof groove

- Specifications

Network Interface

Interface	RJ-45 with Auto MDI/MDIX
Number of ports	1 Port
Transmission	IEEE 802.3, IEEE 802.3u
Transmission	Category 5e shielding 100M
Transmission	10/100 Mbps Auto-Detect
Network protocol	ICMP, IP, TCP, UDP, DHCP, HTTP, SMTP, MODBUS OVER TCP/IP, Ethernet/IP, Delta Configuration

Electrical Specifications

Weight	25 g
Insulation Voltage	500 VDC
Power Consumption	0.8 W
Power Supply	5 VDC

Environment Specifications

Noise immunity	ESD (IEC 61800-5-1,IEC 61000-4-2) EFT (IEC 61800-5-1,IEC 61000-4-4) Surge Test (IEC 61800-5-1,IEC 61000-4-5) Conducted Susceptibility Test (IEC 61800-5-1, IEC 61000-4-6)
Operation/storage	Operation: $-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$ (temperature), 90\% (humidity), pollution degree 2 Storage: $-25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ (temperature), 95\% (humidity), non-condensing
Vibration/shock immunity	International standard: IEC 61800-5-1, IEC 60068-2-6/IEC 61800-5-1, IEC $60068-2-27$

- Installation

Connecting CMC-EIP01 to a Network

1. Turn off the power of $A C$ motor drive.
2. Open the cover of $A C$ motor drive.
3. Connect CAT-5e network cable to RJ-45 port on CMC-EIP01 (See Figure 2).

[Figure 2]

RJ-45 connector: Definition of Pins

PIN	Signal	Definition
1	Tx+	Positive pole for data transmission
2	Tx-	Negative pole for data transmission
3	Rx+	Positive pole for data receiving
4	--	N/C

PIN	Signal	Definition
5	--	N/C
6	Rx-	Negative pole for data receiving
7	--	N/C
8	--	N/C

- Connecting CMC-EIP01 to VFD-CP2000

1. Switch off the power of $A C$ motor drive.
2. Open the front cover of $A C$ motor drive.
3. Place the insulation spacer into the positioning pin at Slot 1 (shown in Figure 3), and aim the two holes on the PCB at the positioning pin. Press the pin to clip the holes with the PCB (see Figure 4).
4. Screw up at torque $6 \sim 8 \mathrm{~kg}-\mathrm{cm}(5.21 \sim 6.94 \mathrm{in}-\mathrm{lbs})$ after the PCB is clipped with the holes (see Figure 5).

[Figure 3]

[Figure 4]

[Figure 5]

- Communication parameter for VFD-CP2000 to connect to an Ethernet

Before VFD-CP2000 is linked to an Ethernet, set up the communication parameters shown in the table below. Then Ethernet master will be able to read/write the frequency characters and control characters from/into VFD-CP2000 after communication parameters are set.

CP2000 Parameters	Functions	Factory setting (Dec)	Explanation
$00-20$	Set up source of frequency command	0	Frequency command from keypad
$00-21$	Set up source of operation command	5	Operation command from communication card.
$09-30$	Communication decoding method	0	The decoding method for Delta AC Motor Drive (Delta AMD).
$09-75$	IP configuration	0	Static IP(0) / Dynamic IP
$09-76$	IP address-1	192	IP address 192.168.1.5
$09-77$	IP address-2	168	IP address 192.168.1.5
$09-78$	IP address-3	1	IP address 192.168.1.5
$09-79$	IP address-4	5	IP address 192.168.1.5
$09-80$	Net mask-1	255	Net mask 255.255.255.0
$09-81$	Net mask-2	255	Net mask 255.255.255.0
$09-82$	Net mask-3	255	Net mask 255.255.255.0
$09-83$	Net mask-4	0	Net mask 255.255.255.0
$09-84$	Default gateway-1	192	Default gateway 192.168.1.1
$09-85$	Default gateway-2	168	Default gateway 192.168.1.1
$09-86$	Default gateway-3	1	Default gateway 192.168.1.1
$09-87$	Default gateway-4	1	Default gateway 192.168.1.1

■ Remove CMC-EIP01 from VFD-CP2000

1. Switch off the power supply of VFD-CP2000.
2. Remove the two screws (see Figure 6).
3. Twist opens the card clip and inserts the slot type screwdriver to the hollow to prize the PCB off the card clip (see Figure 7).
4. Twist opens the other card clip to remove the PCB (see Figure 8).

[Figure 6]

[Figure 8]

- LED Indicators \& Troubleshooting

There are 2 LED indicators on CMC-EIP01. The POWER LED displays the status of power supply, and the LINK LED displays the connection status of the communication.

LED Indicators

LED	Status		Indication	Action
POWER	Green	On	Power supply in normal status	No action required
		Off	No power supply	Check the power supply.
LINK	Green	On	Network connection in normal status	No action required
		Flashes	Network in operation	No action required
	Off	Network not connected	Check if the network cable is connected.	

Troubleshooting

Abnormality	Cause	Action
POWER LED off	AC motor drive not powered	Check if AC motor drive is powered, and if the power supply is normal.
	CMC-EIP01 not connected to AC motor drive	Make sure CMC-EIP01 is connected to AC motor drive.

Abnormality	Cause	Action
LINK LED off	CMC-EIP01 not connected to network	Make sure the network cable is correctly connected to network.
	Poor contact to RJ-45 connector	Make sure RJ-45 connector is connected to Ethernet nort
	CMC-EIP01 not connected to network	Make sure CMC-EIP01 is connected to network.
	PC and CMC-EIP01 in different networks and blocked by network firewall.	Search by IP or set up relevant settings by AC motor drive keypad.
Fail to open CMC-EIP01 setup page	CMC-EIP01 not connected to network	Mncorrect communication setting in DCISoft
	PC and CMC-EIP01 in different networks and blocked by network firewall.	Make sure the communication setting in DCISoft is set to Ethernet.
Conduct the setup by AC motor drive keypad. CMC-EIP01 setup page but fail to utilize webpage monitoring	Incorrect network setting in CMC-EIP01	Check if the network setting for CMC-EIP01 is correct. For the Intranet setting in your company, please consult your IT staff. For the Internet setting in your home, please refer to the network setting instruction provided by your ISP.
Fail to send e-mail	Incorrect network setting in CMC-EIP01	Check if the network setting for CMC-EIP01 is correct.
	Incorrect mail server setting	Please confirm the IP address for SMTP-Server.

EMC-COP01

- RJ-45: Definition of Pins

		Pin	Pin name	Definition
		1	CAN_H	CAN_H bus line (dominant high)
		2	CAN_L	CAN_L bus line (dominant low)
		3	CAN_GND	Ground/OV/V-
	$\square 8 \sim 1 \square$	6	CAN_GND	Ground/OV/V-
Male	Female			

- Specifications

Interface	RJ-45
Number of ports	1 Port
Transmission method	CAN
Transmission cable	CAN standard cable
Transmission speed	$1 \mathrm{M} \mathrm{500k} 250 \mathrm{k} 125 \mathrm{k} 100 \mathrm{k} 50 \mathrm{k}$
Communication protocol	CANopen protocol

- CANopen Communication Cable

Model : TAP-CB03, TAP-CB04

- CANOpen Breakout Box

Model : TAP-CN03

NOTE

Please refer to CANopen user manual for more details on CANopen operation.
CANopen user manual can also be downloaded on Delta website:
http://www.delta.com.tw/industrialautomation/.

09 CP2000 Specifications

230V series

Frame size			A					B			C			D		E		
Model :VFD__ _ CP23_-_			007	015	022	037	055	075	110	150	185	220	300	370	450	550	750	900
		Rated Output Capacity (kVA)	2	3	4	6	8.4	12	18	24	30	36	42	58	72	86	110	128
		Rated Output Current (A)	5	7.5	10	15	21	31	46	61	75	90	105	146	180	215	276	322
		Applicable Motor Output(kW)	0.8	1.5	2.2	3.7	5.5	7.5	11	15	19	22	30	37	45	55	75	90
		Applicable Motor Output(HP)	1	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100	125
		Overload tolerance	120% of rated current for 1 minute during every 5 minutes															
		Max. output frequency(Hz)	600.00 Hz													400.00 Hz		
		Carrier Frequency(kHz)	$2 \sim 15 \mathrm{kHz}$ (8KHz)								$2 \sim 10 \mathrm{kHz}(6 \mathrm{KHz})$					2~9kHz(4KHz)		
		Rated Output Capacity (kVA)	1.8	2	3.2	4.4	6.8	10	13	20	26	30	36	48	58	72	86	102
		Rated Output Current (A)	4.6	5	8	11	17	25	33	49	65	75	90	120	146	180	215	255
		Applicable Motor Output(kW)	0.4	0.8	1.5	2.2	3.7	5.5	7.5	11	15	19	22	30	37	45	55	75
		Applicable Motor Output(HP)	0.5	1	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100
		Overload tolerance	120% of rated current for 1 minute during every 5 minutes, 160% of rated current for 3 seconds during every 25 seconds															
		Max. output frequency(Hz)	600.00 Hz													400.00 Hz		
		Carrier Frequency(kHz)	2~15kHz (8KHz)								2~10kHz (6KHz)					$\begin{gathered} 2 \sim 9 \\ \mathrm{kHz}(4 \mathrm{kHz}) \end{gathered}$		
		nput Current (A) Light Duty	6.4	9.6	15	22	25	35	50	65	83	100	116	146	180	215	276	322
		put Current (A) Normal Duty	3.9	6.4	12	16	20	28	36	52	72	83	99	124	143	171	206	245
		Rated Voltage/Frequency	3-phase AC 200V~240V (-15\% ~ +10\%), 50/60Hz															
		Operating Voltage Range	170~265Vac															
		Frequency Tolerance	47~63Hz															
		Cooling method	Nat Coo	ural oling	Fan Cooling													
		Braking Chopper	Frame A,B,C: Built-in											Frame D and E: Optional				
		DC choke	Frame A, B,C: Optional											Frame D and E: 3\% built-in				
		EMI Filter	Optional															

460V series

Frame size			A							B			C		
Model: VFD \qquad CP43_-_;		$\begin{aligned} & \text { lel: VFD___-_CP43_-_ ; } \\ & \text { /FD____CP4E_-_ _; } \end{aligned}$	007	015	022	037	040	055	075	110	150	185	220	300	370
	$\begin{aligned} & \overline{0} \\ & \overline{7} \\ & 0 \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$	Rated Output Capacity (kVA)	2.4	3.3	4.4	6.8	8.4	10.4	14.3	19	25	30	36	48	58
		Rated Output Current (A)	3	4.2*	5.5*	8.5*	10.5	13*	18*	24*	32*	38*	45	60*	73*
		Applicable Motor Output(kW)	0.75	1.5	2.2	3.7	4	5.5	7.5	11	15	18.5	22	30	37
		Applicable Motor Output(HP)	1	2	3	5	5	7.5	10	15	20	25	30	40	50
		Overload tolerance	120\% of rated current for 1 minute during every 5 minutes												
		Max. output frequency(Hz)	600.00 Hz												
		Carrier Frequency(kHz)	$2 \sim 15 \mathrm{kHz}(8 \mathrm{KHz})$										$2 \sim 10 \mathrm{kHz}(6 \mathrm{KHz})$		
		Rated Output Capacity (kVA)	2.2	2.4	3.2	4.8	7.2	8.4	10	14	19	25	30	36	48
		Rated Output Current (A)	2.8	3	4	6	9	10.5	12	18	24	32	38	45	60
		Applicable Motor Output(kW)	0.4	0.75	1.5	2.2	3.7	4	5.5	7.5	11	15	18.5	22	30
		Applicable Motor Output(HP)	0.5	1	2	3	5	5	7.5	10	15	20	25	30	40
		Overload tolerance	120% of rated current for 1 minute during every 5 minutes, 160% of rated current for 3 seconds during every 25 seconds												
		Max. output frequency(Hz)	600.00 Hz												
		Carrier Frequency(kHz)	$2 \sim 15 \mathrm{kHz}$ (8KHz)										2~10kHz (6kHz)		
		Input Current (A) Light Duty	4.3	6	8.1	12.4	16	20	22	26	35	42	47	66	80
		put Current (A) Normal Duty	3.5	4.3	5.9	8.7	14	15.5	17	20	26	35	40	47	63
		Rated Voltage/Frequency	3-Phase AC 380V~480V (-15\%~+10\%), 50/60Hz												
		Operating Voltage Range	$323 \sim 528 \mathrm{Vac}$												
		Frequency Tolerance	47~63Hz												
Cooling method			Natu	al Co	oling	Fan Cooling									
Braking Chopper			Frame A,B,C: Built-in												
DC choke			Frame A, B,C: Optional												
EMI Filter			Frame A, B, C of VFD \qquad CP4EA- \qquad , EMI filter Built-in; Frame A, B, C of VFD \qquad CP43A- \qquad , EMI filtter Optional												

* The rated output current of version B modles.

460V series

Frame size			D0		D				E		F		G		H		
$\begin{aligned} & \text { Mode } \\ & \text { VFD_ } \end{aligned}$	l:	CP43_-	450	550	450	550	750	900	1100	1320	1600	1850	2200	2800	3150	3550	4000
	$\begin{aligned} & \text { 들 } \\ & \stackrel{\rightharpoonup}{7} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	Rated Output Capacity (kVA)	73	88	73	88	120	143	175	207	247	295	367	422	491	544	613
		Rated Output Current (A)	91	110	91	110	150*	180	220	260*	310	370*	460	530	616	683	770
		Applicable Motor Output(kW)	45	55	45	55	75	90	110	132	160	185	220	280	315	355	400
		Applicable Motor Output(HP)	60	75	60	75	100	125	150	175	215	250	300	375	425	475	536
		Overload tolerance	120\% of rated current for 1 minute during every 5 minutes														
		Max. output frequency(Hz)	600.00 Hz		600.00 Hz			400.00 Hz									
		Carrier Frequency(kHz)	$2 \sim 10 \mathrm{kHz}(6 \mathrm{KHz})$		$2 \sim 10 \mathrm{kHz}(6 \mathrm{KHz})$			$2 \sim 9 \mathrm{kHz}(4 \mathrm{KHz})$									
		Rated Output Capacity (kVA)	58	73	58	73	88	120	143	175	207	247	295	367	438	491	544
		Rated Output Current (A)	73	91	73	91	110	150	180	220	260	310	370	460	550	616	683
		Applicable Motor Output(kW)	37	45	37	45	55	75	90	110	132	160	185	220	280	315	355
		Applicable Motor Output(HP)	50	60	50	60	75	100	125	150	175	215	250	300	375	425	475
		Overload tolerance	120% of rated current for 1 minute during every 5 minutes, 160% of rated current for 3 seconds during every 25 seconds														
		Max. output frequency(Hz)	600.00 Hz		600.00 Hz			400.00 Hz									
		Carrier Frequency(kHz)	$2 \sim 10 \mathrm{kHz}(6 \mathrm{KHz})$		2~10kHz(6KHz)			$2 \sim 9 \mathrm{kHz}(4 \mathrm{KHz})$									
		Current (A) Light Duty	91	110	91	110	150	180	220	260	310	370	460	530	616	683	770
		put Current (A) Normal Duty	74	101	74	101	144	157	167	207	240	300	380	400	494	555	625
		Rated Itage/Frequency	3-Phase AC 380V~480V (-15\%~+10\%), 50/60Hz														
		erating Voltage Range	323~528Vac														
		quency Tolerance	47~63Hz														
Cooling method			Fan Cooling														
Braking Chopper			Frame D and above: Optional														
DC choke			Frame D and above: 3\% built-in														
EMI Filter			Frame D and above: Optional														

General Specifications：

	Control Method Starting Torque	1：V／F（V／F control），2：SVC（Sensorless Vector Control），				
		Reach up to 150% or above at 0.5 Hz ．				
	V／F Curve	4 point adjustable V／F curve and square curve				
	Speed Response Ability	5 Hz				
	Torque Limit	Light Duty：Max．130\％torque current ；Normal Duty：Max．170\％torque current				
	Torque Accuracy	$\pm 5 \%$				
	Max．Output Frequency（Hz）	230V series： 600.00 Hz （55kw and above： 400.00 Hz ）； 460 V series： 600.00 Hz （ 90 KW and above： 400.00 Hz ）				
	Frequency Output Accuracy	Digital command： $\pm 0.01 \%,-10^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$ ，Analog command： $\pm 0.1 \%, 25 \pm 10^{\circ} \mathrm{C}$				
	Output Frequency Resolution	Digital command： 0.01 Hz ，Analog command：max．output frequency $\times 0.03 / 60 \mathrm{~Hz}(\pm 11$ bit）				
	Overload Tolerance	Light duty： 120% of rated current for 1 minute； Normal duty： 120% of rated current for 1 minute； 160% of rated current for 3 seconds				
	Frequency Setting Signal	0～＋10V，4～20mA，0～20mA，pulse input				
	Accel．／Decel．Time	0．00～600．00／0．0～6000．0 seconds				
	Main control function	Fault restart	Parameter copy	Dwell	BACnet Communication	Momentary power loss ride thru
		Speed search	Over－torque detection	Torque limit	16－step speed （max）	Accel／Decel． time switch
		S－curve accel／decel	3－wire sequence	Auto－Tuning （rotational， stationary）	Frequency upper／lower limit settings	Cooling fan on／off switch
		Slip compensation	Torque compensation	JOG frequency	MODOBUS communication （RS－485 RJ45， max． 115.2 kbps）	DC injection braking at start／stop
		Smart Stall	PID control （with sleep function）	Energy saving control		
	Fan Control	230V series Models higher than VFD150CP23A－21（included）are PWM control ； Models lower than VFD150CP23A－21（not included）are on／off switch control． 460V series Models higher than VFD150CP43A－21／4EA－21（included）are PWM control ；Models lower than VFD150CP43A－21／4EA－21（not included）are on／off switch control．				
	Motor Protection	Electronic thermal relay protection				
	Over－current Protection	Light Duty：Over－current protection for 200\％rated current， Normal Duty：Over－current protection for 240% rated current， Current clamp『Light duty：130～135\％』；『Normal duty：170～175\％』				
	Over－voltage Protection	230：drive will stop when DC－BUS voltage exceeds 410 V 460：drive will stop when DC－BUS voltage exceeds 820 V				
	Over－temperature Protection	Built－in temperature sensor				
	Stall Prevention	Stall prevention during acceleration，deceleration and running independently				
	Restart After Instantaneous Power Failure	Parameter setting up to 20 seconds				
	Grounding Leakage Current Protection	Leakage current is higher than 50\％of rated current of the AC motor drive				
International Certifications		CE U Us GB／T12668－2				

Environment for Operation, Storage and Transportation:

DO NOT expose the AC motor drive in harsh environments, such as dust, direct sunlight, corrosive/inflammable gasses, humidity, liquid and vibration environment. The salt in the air must be less than $0.01 \mathrm{mg} / \mathrm{cm}^{2}$ every year.

Specification for Operation Temperature and Protection Level

Model	Frame	Top cover	Conduit Box	Protection Level	Operation Temperature
VFDxxxxCP23A-21 VFDxxxxCP43A-21 VFDxxxxCP4EA-21, VFDxxxxCP4EB-21 VFDxxxxCP43C-21 VFDxxxxCP43S-21	$\begin{aligned} & \text { Frame A~C } \\ & \text { 230V: } 0.75 \sim 30 \mathrm{~kW} \\ & 460 \mathrm{~V}: 0.75 \sim 37 \mathrm{~kW} \end{aligned}$	Remove top cover	Standard conduitplate	IP20/UL Open Type	$\begin{aligned} & \text { ND:-10~50 }{ }^{\circ} \mathrm{C} \\ & \text { LD: }-10 \sim 40^{\circ} \mathrm{C} \end{aligned}$
		$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Standard with top } \\ \text { cover } \end{array} \\ \hline \end{array}$		IP20/UL Type1/NEMA1	$\begin{aligned} & \text { ND: }-10 \sim 40^{\circ} \mathrm{C} \\ & \text { LD: }-10 \sim 40^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
	Frame DO, D~H 230V: above 37kW 460V: above 45kW	N/A	With conduit box	IP20/UL Type1/NEMA1	ND: $-10 \sim 40^{\circ} \mathrm{C}$ LD: $-10 \sim 40^{\circ} \mathrm{C}$
VFDxxxxCP23A-00 VFDxxxxCP43A-00 VFDxxxxCP43B-00 VFDxxxxCP43C-00 VFDxxxxCP43S-00	Frame DO, D~H 230V: above 37kW 460V: above 45kW	N/A	Without conduit box	IP00 IP20/UL Open Type	ND: $-10 \sim 50^{\circ} \mathrm{C}$ LD: $-10 \sim 40^{\circ} \mathrm{C}$ (ND = Normal Duty; LD = Light Duty)

C Type Derating for Altitude

Rating (\%) at Stardard Ambient Temperature*
Ta at Rating $=100 \%$

* Stardard Ambient Temperature= 50 degC for UL Open Type / IP20

Stardard Ambient Temperature= 40 degC for UL Type I /IP 20 \& UL Open Type / IP20 Side by Side

Protection Level	Operating Environment
UL Type I / IP20	When the AC motor drive is operating at the rated current and the ambient temperature has to be between $10^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$. When the temperature is over $40^{\circ} \mathrm{C}$, for every increase by $1^{\circ} \mathrm{C}$, decrease 2% of the rated current. The maimum allowable temperature is $60^{\circ} \mathrm{C}$.
UL Open Type /	When the AC motor drive is operating at the rated current and the ambient temperature has to be between $-10^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}$. When the temperature is over $50^{\circ} \mathrm{C}$, for every increase by $1^{\circ} \mathrm{C}$, decrease 2% of the rated current. The maimum allowable temperature is $60^{\circ} \mathrm{C}$.
IP20	If AC motor drive is installed at altitude $0 \sim 1000 \mathrm{~m}$, follow normal operation restriction. If it is install at altitude $1000 \sim 300 \mathrm{~m}$, decrease 2% of rated current or lower $05^{\circ} \mathrm{C}$ of temeperature for every 100 m increase in altitude. Maximum altitude for Corner Grounded is 2000 m.
High Altitude	

10 Digital Keypad

KPC-CC01

KPC-CE01(Option)

- Communication Interface

RJ-45 (socket), RS-485 interface;

- Installation Method

Embedded type and can be put flat on the surface of the control box. The front cover is water proof.

- Charge the digital keypad for 6 minutes before you use it to program Delta's AC Motor Drive.
- What's new at KPC-CC01 keypad? -It supports calendar function of PLC (See Chapeter 17 for more infomation about PLC.) -The available editing pages reach the maximum number of pages supported by TP Editor.
-TP Editor v.140.1 is required
-It supports VFDSoft to read parameters. Please go to http://www.delta.com.tw/ to download VFDSoft v1.45.

Descriptions of Keypad Functions

Key	Descriptions
RUN	Start Operation Key 1. It is only valid when the source of operation command is from the keypad. 2. It can operate the AC motor drive by the function setting and the RUN LED will be ON. 3. It can be pressed again and again at stop process. 4. When enabling "HAND" mode, it is only valid when the source of operation command is from the keypad.
STOP RESET	Stop Command Key. This key has the highest processing priority in any situation. 1. When it receives STOP command, no matter the AC motor drive is in operation or stop status, the AC motor drive needs to execute "STOP" command. 2. The RESET key can be used to reset the drive after the fault occurs. For those faults that can't be reset by the RESET key, see the fault records after pressing MENU key for details.
	Operation Direction Key 1. This key is only control the operation direction NOT for activate the drive. FWD: forward, REV: reverse. 2. Refer to the LED descriptions for more details.
ENTER	ENTER Key Press ENTER and go to the next level. If it is the last level then press ENTER to execute the command.
ESC	ESC Key ESC key function is to leave current menu and return to the last menu. It is also functioned as a return key in the sub-menu.

MENU	Press menu to return to main menu. Menu content: KPC-CE01 does not support function $5 \sim 13$. 1. Detail Parameter 7. Quick/Simple Setup 13. PC Link 2. Copy Parameter 8. Display Setup 3. Keypad Locked 9. Time Setup 4. PLC Function 10. Language Setup 5. Copy PLC 11. Startup Menu 6. Fault Record 12. Main Page
	Direction: Left/Right/Up/Down 1. In the numeric value setting mode, it is used to move the cursor and change the numeric value. 2. In the menu/text selection mode, it is used for item selection.
F1 F2 F3 F4	Function Key 1. It has the factory setting function and the function can be set by the user. The present factory setting: F1 is JOG function. 2. Other functions must be defined by TPEditor first. TPEditor software V1.03 is available for download at: http://www.delta.com.tw/product/em/download/download main.asp?act=3\&pid=3\&cid=3 \&tpid=3 3. Installation Instruction for TPEditor is on page 10-15 of this chapter.
HAND	HAND ON Key 1. This key is executed by the parameter settings of the source of Hand frequency and hand operation. The factory settings of both source of Hand frequency and hand operation are the digital keypad. 2. Press HAND ON key at stop status, the setting will switch to hand frequency source and hand operation source. Press HAND ON key at operation status, it stops the AC motor drive first (display AHSP warning), and switch to hand frequency source and hand operation source. 3. Successful mode switching for KPC-CE01, "H/A" LED will be on; for KPC-CC01, it will display HAND mode/ AUTO mode on the screen.
AUTO	1. This key is executed by the parameter settings of the source of AUTO frequency and AUTO operation. The factory setting is the external terminal (source of operation is 4-20mA). 2. Press Auto key at stop status, the setting will switch to hand frequency source and hand operation source. Press Auto key at operation status, it stops the AC motor drive first (display AHSP warning), and switch to hand frequency source and hand operation source. 3. Successful mode switching for KPC-CE01, "H/A" LED will be off; for KPC-CC01, it will display HAND mode/ AUTO mode on the screen

Descriptions of LED Functions

LED	Descriptions
RUN	Steady ON: operation indicator of the AC motor drive, including DC brake, zero speed, standby, restart after fault and speed search. Blinking: drive is decelerating to stop or in the status of base block. Steady OFF: drive doesn't execute the operation command
RESET	Steady ON: stop indicator of the AC motor drive. Blinking: drive is in the standby status. Steady OFF: drive doesn't execute "STOP" command.
Operation Direction LED (green: forward running, red: reverse running) Steady ON: drive is in forward running status. Blinking: drive is changing the operation direction. Steady OFF: drive is in reverse running status.	
(Only KPC-CE01 support this function) Setting can be done during operation. HAND LED: When HAND LED is on (HAND mode); when HAND LED is off (AUTO mode).	

AUTO	(Only KPC-CE01 support this function) Setting can be done during operation. AUTO LED: When AUTO LED is on (AUTO mode); when AUTO LED is off (HAND mode).

Digital Keypad: KPC-CC01 Function

NOTE

Startup page can only display pictures, no flash.
2. When Power ON, it will display startup page then the main page. The main page displays Delta's default setting F/H/A/U, the display order can be set by Pr. 00.03 (Startup display). When the selected item is U page, use left key and right key to switch between the items, the display order of U page is set by Pr. 00.04 (User display).
3. Charge the digital keypad for 6 minutes before you use it to program Delta's AC Motor Drive.

4. Display Icon

Display item

MENU	MENU	5. Copy PLC
	1.Detail Par ameter	6. Fault Record
V1.Detail Parameter	2.Copy Parameter 3. Keypad Locked	7. Quick/Simple Setup
2. Copy Parameter	4.PLC Function	8. Display Setup
3.Keypad Locked		9. Time Setup 10. Language Setup
Item 1~4 are the common items for KPC-CC01 \&KPC-CE01		11. Start-up
		12. Main page

1. Detail Parameter

2. Copy Parameter

3. Keypad locked

4. PLC Function

PLC	When activate and stop PLC function, the PLC status will be displayed on main page of Delta default setting.
1.Disable 2.PLC Run 3.PLC Stop PLC function	
1. Disable 2. PLC run 3. PLC stop	The PLC function of KPC-CE01 can only displays: 1. PLCO 2. PLC1 3. PLC2

5. Copy PLC

	Copy PLC
Copy PLC $\boldsymbol{\nabla} 1$. 2. 3.	1. Duplicate 4 sets of parameters.
	2. When the setting is complete, the date will be written to the Copy PLC page.
	Copy PLC
	1.2010/03/14 2. 3. Press ENTER to setting menu.
	File 1 ∇ 1. Save to the drive Press to select where to save the file 2. Save to the digital display Press ENTER execute file saving process.
	If you select " 1 .save to the drive" and press ENTER, the file will be saved to the drive. NOTE If password protection for WPLSoft editor was set, it is required to enter the password before the file can successfully be saved onto the digital display.
	File 1 Password 0000 Input Times 0

6. Fault record

	Fault Record
Fault record	It can accumulate 6 sets of recent fault records. The first fault code displays in the record is the latest fault. Select the fault
v 1:GFF	
H	Fault record
Press ENTER to select.	Press ENTER to view the current and voltage of the fault
KPC-CE01 does not support this function.	2: ocA Time: 19:47:00 Frequency: 0.00 Current: 0.00 NOTE Fault actions of AC motor drive are record and save to KPC-CC01. When KPC-CC01 is removed and apply to another AC motor drive, the previous fault records will not be deleted. The new fault records of the present AC motor drive will accumulate to KPC-CC01.

7. Quick/Simple Setting

Quick setting
1: V/F mode
3: SVC mode
6: My mode
Press ENTER to select.
Quick Setting:
1. VF Mode
3. SVC Mode
6.My Mode

Quick Setting: (CP2000 does NOT have PG card)
1)V/F Mode

01: Password Input (Decode)

Items

1. Parameter Protection Password Input (P00-07)
2. Parameter Protection Password Setting (P00-08)
3. Control Mode (P00-10)
4. Control of Speed Mode (P00-11)
5. Load Selection (P00-16)
6. Carrier Frequency (P00-17)
7. Source of the Master Frequency Command (AUTO) (P00-20)
8. Source of the Operation Command (AUTO) (PO0-21)
9. Stop Method (POO-22)
10. Digital Keypad STOP function (P00-32)
11. Max. Operation Frequency (P01-00)
12. Base Frequency of Motor 1 (P01-01)
13. Max. Output Voltage Setting of Motor 1 (P01-02)
14. Mid-point Frequency 1 of Motor 1 (P01-03)
15. Mid-point Voltage 1 of Motor 1 (P01-04)
16. Mid-point Frequency 2 of Motor 1 (P01-05)
17. Mid-point Voltage 2 of Motor 1 (P01-06)
18. Min. Output Frequency of Motor 1 (P01-07)
19. Min. Output Voltage of Motor 1 (P01-08)
20. Output Frequency Upper Limit (P01-10)
21. Output Frequency Lower Limit (P01-11)
22. Accel. Time 1 (P01-12)
23. Decel Time 1 (P01-13)
24. Over-voltage Stall Prevention (P06-01)
25. Derating Protection (P06-55)
26. Software Brake Level (P07-00)
27. Speed Search during Start-up (P07-12)
28. Emergency Stop (EF) \& Force to Stop Selection (P07-20)
29. Filter Time of Torque Command (P07-24)
30. Filter Time of Slip Compensation (P07-25)
31. Torque Compensation Gain (P07-26)
32. Slip Compensation Gain (P07-27)
3)SVC Mode

01: Password Input (Decode)

Items

1. Parameter Protection Password Input (P00-07)
2. Parameter Protection Password Setting (P00-08)
3. Control Mode (P00-10)
4. Control of Speed Mode (P00-11)
5. Load Selection (P00-16)
6. Carrier Frequency (P00-17)
7. Source of the Master Frequency Command (AUTO) (P00-20)

8．Display setup

9．Time setting

10．Language setup

Language 1：English 2：繁體中文 3：简体中文	Language selection．

11．Startup Page Setting

12. Main page

13. PC Link

Other display

When fault occur, the menu will display:

1. Press ENTER and start RESET. If still no response, please contact local distributor or return to the factory. To view the fault DC BUS voltage, output current and output voltage, press "MENU" \rightarrow "Fault Record".
2. Press ENTER again, if the screen returns to main page, the fault is clear.
3. When fault or warning message appears, backlight LED will blinks until the fault or the warning is cleared.

Optional accessory for digital keypad: RJ45 Extension Lead

Part No.	Description
CBC-K3FT	RJ45 Extension Lead 3 feet
CBC-K5FT	RJ45 Extension Lead 5 feet
CBC-K7FT	RJ45 Extension Lead 7 feet
CBC-K10FT	RJ45 Extension Lead 10 feet
CBC-K16FT	RJ45 Extension Lead 16 feet

Note:
a. Keypad version1.00 supports up to 4 main pages. If you download over 4 main pages, it will only support the first 4 downloaded main pages.
b. By pressing keypads, you can only switch pages from pates. It doesn't support entering words or images.
c. Downloading baud rate supports 9600 bps, 19200 bps and 38400 bps.
d. The VFD communication address to read and write are at $0 \times 22 x x$

Definition of Communication address:

Address	Read/Write		Definition	Description
2200h	R	b15~b0	Output current (A)	
2201h	R	b15~b0	Counter Value (c)	
2202h	R	b15~b0	Actual Frequency (H)	
2203h	R	b15~b0	DC-Bus Voltage (U)	
2204h	R	b15~b0	Output Voltage(A)	
2205h	R	b15~b0	Power Factor Angle (n)	
2206h	R	b15~b0	Output Power(P)	
2207h	R	b15~b0	Actual Motor Speed(r)	
2208h	R	b15~b0	Output Torque (t)	
220Ah	R	b15~b0	Feedback PV value (b)	
220Bh	R	b15~b0	AVI in percentage (1.)	
220Ch	R	b15~b0	ACI in percentage (2.)	
220Dh	R	b15~b0	AUI in percentage (3.)	
220Eh	R	b15~b0	Heat Sink temperature (t.)	
220Fh	R	b15~b0	IBGT temperature (T)	
2210h	R	b15~b0	DI ON/OFF status (i)	
2211h	R	b15~b0	DO ON/OFF status (0)	
2212h	R	b15~b0	Multi-Speed (S)	
2213h	R	b15~b0	DI CPU pin status (i.)	
2214h	R	b15~b0	DO CPU pin status (o.)	
2215h	R	b15~b0	Running number of Encoder (Z)	
2216h	R	b15~b0	Pulse Input Frequency (4)	
2217h	R	b15~b0	Pulse Input Position (4.)	

TPEditor Installation Instruction

1) TPEditor: Setup \& Basic Functions
1. Run TPEditor version 1.30
```
주ㄴㅔㅡㄹ
TPEditor 1.30
```

2. Go to File (F) \rightarrow Click on New. The Window below will pop up. At the device type, click on the drop down menu and choose DELTA VFD-C Inverter. At the TP type, click on the drop down menu and choose VFD-C Keypad. As for File Name, enter TPE0. Now click on OK.

New Project	
HMI \Longrightarrow PLC	
Set Devix Type	
DELTA VFD.C Liverear	\checkmark
TP Tyre	
VFL-C- KeyPad	\checkmark
Fiel Nanc	
TPEO	
OK	Cancel

3. You are now at the designing page. Go to Edit (E) \rightarrow Click on Add a New Page (A) or go to the TP page on the upper right side, right click once on TP page and choose Add to increase one more page for editing. The current firmware of Keypad is version1.00 and can support up to 4 pages.

4. Download setting, Go to Tool \rightarrow Communication settings (C) to set up the PC Com Port and Baud Rate. The supporting speeds of Baud rate are 9600bps, 19200bps and 38400bps. The default setting of TP address is 1, please do not modify.

Communication Setting	
TP Station Address	11 \div
PCCOM Port	OOM10 -
Baud Rate	$9600 \quad \square$
OK	Cancel

2) Edit Startup Page
1. Click once on the Boot Page on the right hand side of your computer screen or click on View (V) \rightarrow click on Boot Page (B). Then a blank Boot Page window will pop up. Use the circled items to design your Startup page.

2. Static Text \mathbf{A}

Open a blank page, click once on this button page. The following windows will pop up.

On the right hand side of the Static Text Setting, you can adjust the frame setting, the text direction, the alignment and the font setting. Once you finish all the adjustments that you need. You can continue to input your text in the blank space of Static Text Setting window. When you finish inputting your text, click on OK to continue your next step or click cancel to abort the current step.
34. Static Bitmap \rightarrow Open a blank page, then click once on this button and then double click on that blank page. The following window will pop up.

Please note that Static Bitmap setting support only images in BMP format. Now choose an image that you need and click open, then that image will appear in the Static Bitmap window.
35. Geometric Bitmap $\backslash \square \square O O r \theta \theta \odot \subseteq \tilde{\xi}$ \rightarrow As shown in the picture on the left side, there are 11 kinds of geometric bitmap to choose. Open a new blank page then click once on a geometric bitmap icon that you need. Then drag that icon and enlarge it to the size that you need on that blank page. For example, if you drag this icon \square to a blank page, you will see the following window.

36. Download---Take the image below as an example. The sentence "Boot page" is a static text; the 11 images below are geometric bitmaps. The image on the right hand side is a Static Bitmap. To upload a start up page, double click to activate "Boot page. Make sure that you have followed the instruction on page 3 to choose the right com port. Then go to "Communication (M)" \rightarrow Click on "Write Boot Page TP (B)." When you see the pop up message below

Go to the C2000 Keypad, press Menu then keep on pressing the Upward key until you see "PC Link," then press ENTER once, when you see "Press Enter to PC Link" on the keypad, press the ENTER again. Then click the YES button to begin the upload.

3) Edit Main Page

1. Click on a page under the TP Page to edit or go to View \rightarrow click on Boot Page to begin to edit main page. The objects available for you to use are in the red circles below.

From left to right: Static Text, ASCII Display, Static Bitmap, Scale, Bar Graph, Button, Clock Display, Units, Numeric Input, 11 geometric bitmaps and different width of lines. The application of Static Text, Static Bitmap, and geometric bitmap is the same as the editing startup page.
2. Numeric/ASCII Display A): Go to Objects $(\mathrm{O}) \rightarrow$ Click once on the Numeric/ASCII Display(A) N Numeric/ASCII Display(A) \rightarrow Drag to enlarge to reach the size that you need to add objects in the screen where you want to create an object \rightarrow Double click on the object to set up Related Devices, Frame Setting, Fonts and Alignment.

Related Device: Choose the VFD Communication Port that you need, if you want to read output frequency (H), set the VFD Communication Port to $\$ 2202$. For other values, please refer to ACMD ModBus Comm Address List.
3. Scale Setting $\overline{\overline{4 \cdot \frac{1}{2}}}$: On the Tool Bar, click on this ${ }^{\overline{4} \cdot \frac{1}{2}}$ for Scale Setting. You can also edit Scale Setting in the Property Window on the right hand side of your computer screen.

a. Scale Position: Click on the drop down list to choose which position that you need to place a scale.
b. Scale Side: Click on the drop down list to choose if you want to number your scale from smaller number to bigger number or from big to small. Click OK to accept this setting or click Cancel to abort.
c. Font Setting: Click on the drop down list to choose the Font setting that you need then click OK to accept the setting or click Cancel to abort.
d. Value Length: Click on the drop down to choose 16bits or 32 bits. Then click OK to accept the setting or click Cancel to abort.
e. Main Scale \& Sub Scale: In order to divide the whole scale into equal parts, key in the numbers of your choices for main scale and sub scale.
f. Maximum value \& Minimum Value are the numbers on the two ends of a scale. They can be negative numbers but the input numbers are limited by value.
g. Follow the Scale setting mentioned above; you will have a scale as shown below.

4. Bar Graph setting

a. Related Device: Choose the VFD Communication Port that you need.
b. Direction Setting: Click on the drop down menu to choose one of the following directions: From Bottom to Top, From Top to Bottom, From Left to Right or From Right to Left.
c. Maximum Value \& Minimum Value: They define the range covered by the maximum value and minimum value. If a value is smaller than or equal to the minimum value, then the bar graph will be blank. If a value is bigger or equal to the maximum value, then the bar graph will be full. If a value is between minimum and maximum value, then the bar graph will be filled proportionally.
5. Button 8 : Currently this function only allows the Keypad to switch pages; other functions are not yet available. Text input function and Image inserted functions are not yet supported.
Double click on 8 to open set up window.

Button Setting				
Button Tyre	Eage hamp	Page Jump Setting Fage No 0	Frame Setting Single Frame Font Seting $5 \pi 8 \quad-$ Tert Aligument Bitnap Alignment	
Wrie-in	\ldots			
1 Reand	\square - 1		Midele -	Middle
Γ Function Key	\square		Middle $\quad \square$	Middle \quad
Value Lergth	-	T Cal \quad...	Graph Input:	
Value Tirne	\square	Beiore Writins Reset		
Cument Sate	0 -	c Afertuting C Set	[None]	
Total States	$\Gamma \quad \frac{\pi}{\square}$	User Level		Birmap Clear
Button Text	Γ		OK	Cancel

a. <Button Type> allows you set up buttons' functions. But Page Jump is the only supported function currently.
b. Page Jump setting: After you choose the Page Jump function in the drop down list, you will see this Page Jump Setting Menu
c. <Function Key> allows you to assign functions to the following keys on the KPC-CC01 keypad: F1, F2, F3, F4, Up, Down, Left and Right. Please note that the Up and Down keys are locked by TPEditor. These two keys cannot be programmed. If you want to program Up and Down keys, go to Tool \rightarrow Function Key Settings (F) \rightarrow Re-Define Up/Down Key(R).

d. There are no supported functions other than the setting mentioned above.
6. Clock Display Setting 1 Click once on this button 1

Open a new file and click once in that window, you will see the following

In the clock display setting, you can choose to display Time, Day or Date on the Keypad. To adjust time, go to \#9 on the Keypad's menu. You can also adjust Frame Setting, Font Setting and Alignment.
7. Unit Measurement : Click once on this Button:
Open a new file and double click on that window, you will see the following

Choose from the drop down list the Metrology and the Unity Name that you need.
As for Metrology, you have the following choices Length, Square Measure, Volume/Solid Measure, Weight, Speed, Time and Temperature. The unit name changes automatically when you change metrology type.
8. Numeric Input Setting ${ }^{\underline{23} \text {. }}$

This menu allows you to provide parameters or communication ports and to input numbers.
Click once on this button 른.
Open a new file and double click on that window, you will see the following:

a. Related Device: There are two blank spaces to fill in, one is <Writing> and another one is <Read>. Input the numbers that you want to display and the corresponding numbers of a parameter and that of a communication port. For example, input 012C to Read and Write Parameter P01-44.
b. OutLine Setting: The Frame setting, Font setting, Vertical Alignment and Horizontal Alignment are the same as mentioned before. Click on the drop down menu and choose the setting that you need.
c. Function key: The setting here allows you to program keys on the keypad. Press the key on the menu then the corresponding key on the keypad will start to blink, then press Enter to confirm the setting.
d. Value Type \& Value Length: These two factors influence the range of the Minimum and Maximum Value of the Limit Setting. Please note that the corresponding supporting values for C 2000 have to be 16bits. The 32bits values are not supported.
e. Value Setting: This part is set automatically by the keypad itself.
f. Limit Setting: Input the range the security setting here.
g. For example, if you set Function Key as F1, Minimum Value as 0 and Maximum Value as 4, then press F1 on Keypad Then you can press Up and Down key on the keypad to increase or decrease the value. Press Enter Key on the keypad to confirm your setting. You can also go to parameter table 01-44 to verify if your input correctly the value.

0:
9. Download TP Page

Boot Page
: Press Up or Down key on the keypad until you reach \#13 PC
Link.
Then press Enter on the keypad and you will see the word "Waiting" on keypad's screen. Now choose a page that you have created then go to Communication (M) \rightarrow Write to TP (W) to start downloading the page to the keypad

When you see the word Completed on the keypad's screen, that means the download is done. Then you can press ESC on the keypad to go back to the menu of the keypad.

11 Summaries of Parameter Settings

00 Drive Parameters

W. NOTE IM: Induction Motor; PM: Permanent Magnet Motor

	Parameter	Function	Setting	Factory Setting
			10: All parameters are reset to factory settings (base frequency is 60 Hz)	
N	00-03	Start-up Display Selection	$0: F$ (frequency command) 1: H (output frequency) 2: U (multi-function display, see Pr.00-04) 3: A (output current)	0
N	00-04	Multi-function Display (User Defined)	0 : Display output current (A) 1: Display counter value (c) 2: Display actual output frequency (H.) 3: Display DC-BUS voltage (v) 4: Display output voltage (E) 5: Display output power angle (n) 6: Display output power in kW (P) 8: Display estimate output torque \% (t) 10: Display PID feedback in \% (b) 11: Display AVI1 in \% (1.) 12: Display ACI in \% (2.) 13: Display AVI2 in \% (3.) 14: Display the temperature of IGBT in ${ }^{\circ} \mathrm{C}$ (i.) 15: Display the temperature of heat sink in ${ }^{\circ} \mathrm{C}$ (c.) 16: The status of digital input (ON/OFF) (i) 17: The status of digital output (ON/OFF) (0) 18: Multi-step speed (S) 19: The corresponding CPU pin status of digital input (d.) 20: The corresponding CPU pin status of digital output (0.) 25: Overload counting ($0.00 \sim 100.00 \%$) (h.) 26: Ground Fault GFF (Unit :\%)(G.) 27: DC Bus voltage ripple (Unit: Vdc) (r.) 28: Display PLC data D1043 (C) 30: Display output of user defined (U) 31: H page x Pr.00-05 Display user Gain(K) 34: Operation speed of fan(\%) (F.) 37: Reserved 38: Display drive status (6.) 41: KWH display, unit $\mathrm{KWH}(\mathrm{J})$ 42: PID Reference, unit \% (L.) 43: PID offset, unit (\%) (o) 44: PID Output frequency, unit: Hz (b.)	3
	00-05	Coefficient Gain in Actual Output Frequency	0~160.00	1.00
	00-06	Software version	Read Only	\#.\#\#
N	00-07	Parameter Protection Password Input	0~65535 0~4: Recording \# of times of password attemps	0
N	00-08	Parameter Protection Password Setting	$\begin{aligned} & 0 \sim 65535 \\ & 0: \text { No password protection / password is entered } \\ & \text { correctly (Proo-07 } \\ & 1: \text { Parameter is locked } \\ & \hline \end{aligned}$	0
	$\begin{aligned} & 00-09 ~ \\ & 00-10 \end{aligned}$	Reserved		
	00-11	Velocity Control Mode	0 : VF (V/F control) 2: SVC (Sensor-Less Vector Control)	0
	$\begin{aligned} & 00-12 \sim \\ & 00-15 \end{aligned}$	Reserved		
N	00-16	Loading mode selection	0 : Light Duty 1: Normal Duty	0

	Parameter	Function	Setting		Factory Setting
	00-17	Carrier Frequency	2~15kHz	LD: 1~20hp	8
			230 V	ND: 0.5~15HP	
			$2 \sim 15 \mathrm{kHz}$	LD: 1~25hp	
			460 V	ND: 0.5-20HP	
			2~10kHz	LD: 25~60hp	6
			230 V	ND: 20~50hp	
			2~10kHz	LD: 30~100hp	
			460 V	ND: 25~75hp	
			2-9kHz	LD: 75-125hp	4
			230 V	ND: 60~100hp	
			2~9kHz	LD: 125~536hp	
			460 V	ND: 100~475hp	
	00-18	Reserved			
	00-19	PLC command mask(SOOC, SOOF, SOTC, SOPC)	0~65535		0
N	00-20	Source of the MASTER Frequency Command (AUTO)	0: Digital keypad 1: RS-485 serial communication 2: External analog input (Pr.03-00) 3: External UP/DOWN terminal 6: CANopen communication card 8: Communication card (no CANopen card)		0
N	00-21	Source of the Operation Command (AUTO)	0: Digital keypad 1: External analog input (Pr.03-00) 2: RS-485 serial communication 3: External UP/DOWN terminal 5: Communication card (not included CANopen card)		0
N	00-22	Stop method	0: Ramp to stop 1: Coast to stop		0
N	00-23	Motor Operating Direction Control	0: Enable forward/reverse 1: Reverse disable 2: Forward disable		0
	00-24	Memory of Communication Frequency Command	Read Only		Read Only
	00-25	User Defined Property	Bit 0~3: user defined on decimal places 0000b: no decimal place 0001b: one decimal place 0010b: two decimal place 0011b: three decimal place Bit 4~15: user define on unit 000xh: Hz 001xh: rpm 002xh: \% 003xh:kg 004xH: m/s 005xH: kW 006xH: HP 007xH: ppm 008xH: 1/m 009xH: kg/s 00AxH: kg/m 00BxH: kg/h 00CxH: lb/s 00DxH: lb/m 00ExH: lb/h		0

Parameter	Function	Setting	Factory Setting
		00FxH: ft/s 010xH: ft/m 011xH: m 012xH: ft 013xH: degC 014xH: degF 015xH: mbar 016xH: bar 017xH: Pa 018xH: kPa 019xH: mWG 01AxH: inWG 01BxH: ftWG 01CxH: psi 01DxH: atm 01ExH: L/s 01FxH: L/m 020xH: L/h 021xH: m3/s 022xH: m3/h 023xH: GPM 024xH: CFM	
00-26	Max. User Defined Value	0: Disable 0000b: 0~65535 (No decimal place in Pr.00-25 setting) 0001b: 0.0~6553.5 (One decimal place in Pr.00-25 setting) 0010b: 0.0~655.35(Two decimal place in Pr.00-25 setting) 0011b: 0.0~65.536 (Three decimal place in Pr.00-25 setting)	0
00-27	User Defined Value	Read Only	Read Only
00-28	Switching from Auto mode to Hand mode	Bit0 : Sleep Function Control Bit 0 : Cancel sleep function 1: Sleep function and Auto mode are the same Bit1 : Unit of the Control Bit 0 : Change unit to Hz 1: Same unit as the Auto mode Bit2 : PID Control Bit 0: Cancel PID control 1: PID control and Auto mode are the same.	0
00-29	Local/Remote Selection	0 : Standard HOA function. 1: When switching between Local/Remote: If the drive is running, the drive will stop. If the drive is already stopped, it still remains stopped. 2: The drive still follows the setting at Remote while switching to Local. For example, if the setting at Remote is "running", the drive keeps on "running" even after the drive is switched from Remote to Local. Unless a "stop" command is given, then the drive will be stopped under LOCAL mode.	0

	Parameter	Function	Setting	Factory Setting
			3: The drive still follows the setting at Local while switching to Remote. For example, if the setting at L is "stopping', the drive keeps "stopping" even after the drive is at Remote mode.Unless a "running" command is given, then the drive will start to run under Remote mode. 4: The drive remembers the both settings at Local and Remote. When switch to Remote, the drive follows right away the setting at Remote. When switch to Local, the drive follows instantly the setting at Local.	
N	00-30	Source of the Master Frequency Command (HAND)	0: Digital keypad 1: RS-485 serial communication 2: External analog input (Pr.03-00) 3: External UP/DOWN terminal 6: CANopen communication card 8: Communication card (no CANopen card)	0
N	00-31	Source of the Operation Command (HAND)	0: Digital keypad 1: External terminals. Keypad STOP disabled. 2: RS-485 serial communication. Keypad STOP disabled. 3: CANopen communication card 5: Communication card (not include CANopen card)	0
N	00-32	Digital Keypad STOP Function	0: STOP key disable 1: STOP key enable	0
	$\begin{aligned} & 00-33 \\ & \sim \\ & 00-47 \end{aligned}$	Reserved		
N	00-48	Display Filter Time (Current)	0.001~65.535	0.100
N	00-49	Display Filter Time (Keypad)	0.001~65.535	0.100
	00-50	Software Version (date)	0~65535	Read Only
	00-51~00-60	Reserved		

01 Basic Parameter

	Parameter	Explanation	Settings	Factory Setting
	01-00	Max. Operating Frequency (Hz)	$50.00 \sim 600.00 \mathrm{~Hz}$	$\begin{aligned} & 60.00 / \\ & 50.00 \end{aligned}$
	01-01	Motor1: Max Output Frequency(Hz)	0.00~600.00Hz	$\begin{aligned} & 60.00 / \\ & 50.00 \end{aligned}$
	01-02	Motor1: Max Output Voltage (V)	$\begin{aligned} & 230 \mathrm{~V} \text { models: } 0.0 \mathrm{~V} \sim 255.0 \mathrm{~V} \\ & 460 \mathrm{~V} \text { models: } 0.0 \mathrm{~V} \sim 510.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 220.0 \\ & 400.0 \end{aligned}$
	01-03	Mid-point Frequency 1 of Motor 1	0.00~600.00Hz	3.0
N	01-04	Mid-point Voltage 1 of Motor 1	$\begin{aligned} & \text { 230V: 0.0V~240.0V } \\ & 460 \mathrm{~V}: 0.0 \mathrm{~V} \sim 480.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 110 \\ & 220 \end{aligned}$
	01-05	Mid-point Frequency 2 of Motor 1	0.00~600.00Hz	0.50
N	01-06	Mid-point Voltage 2 of Motor 1	$\begin{aligned} & 230 \mathrm{~V}: 0.0 \mathrm{~V} \sim 240.0 \mathrm{~V} \\ & 460 \mathrm{~V}: 0.0 \mathrm{~V} \sim 480.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$
	01-07	Min. Output Frequency of Motor 1	0.00~600.00Hz	0.00
N	01-08	Min. Output Voltage of Motor 1	$\begin{aligned} & 230 \mathrm{~V}: 0.0 \mathrm{~V} \sim 240.0 \mathrm{~V} \\ & 460 \mathrm{~V}: 0.0 \mathrm{~V} \sim 480.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$
	01-09	Start-Up Frequency	$0.00 \sim 600.00 \mathrm{~Hz}$	0.50
N	01-10	Output Frequency Upper Limit	0.00~600.00Hz	600.00
N	01-11	Output Frequency Lower Limit	0.00~600.00Hz	0
N	01-12	Accel. Time 1	Pr.01-45=0: $0.00 \sim 600.00$ secondPr.01-45=1: $0.00 \sim 6000.0$ second	$\begin{aligned} & 10.00 \\ & 10.0 \end{aligned}$
N	01-13	Decel. Time 1		
N	01-14	Accel. Time 2		
N	01-15	Decel. Time 2		
N	01-16	Accel. Time 3		
N	01-17	Decel. Time 3		
N	01-18	Accel. Time 4		
N	01-19	Decel. Time 4		
N	01-20	JOG Acceleration Time		
N	01-21	JOG Deceleration Time		
N	01-22	JOG Frequency	0.00~600.00Hz	6.00
N	01-23	Frequency of 1st Acceleration / Deceleration \& Frequency of 4th Acceleration / Deceleration.	0.00~600.00Hz	0.00
N	01-24	S-curve for Acceleration Departure Time 1	Pr.01-45=0: 0.00~25.00 second Pr.01-45=1: 0.0~250.0 second	$\begin{aligned} & 0.20 \\ & 0.2 \end{aligned}$
N	01-25	S-curve for Acceleration Arrival Time 2		
N	01-26	S-curve for Deceleration Departure Time 1		
N	01-27	S-curve for Deceleration Arrival Time 2		
	01-28	Upper limit of Frequency 1 setting not allowed	0.00~600.00Hz	0.00
	01-29	Lower limit of Frequency 1 setting not allowed	0.00~600.00Hz	0.00

	Explanation	Settings	Factory Setting
	Upper limit of Frequency 2 setting not allowed	$0.00 \sim 600.00 \mathrm{~Hz}$	0.00
	Lower limit of Frequency 2 setting not allowed	$0.00 \sim 600.00 \mathrm{~Hz}$	0.00
	Upper limit of Frequency 3 setting not allowed	$0.00 \sim 600.00 \mathrm{~Hz}$	0.00
	Lower limit of Frequency 3 setting not allowed	$0.00 \sim 600.00 \mathrm{~Hz}$	0.00
	Zero-speed Mode	0 : Output waiting 1: Zero-speed operation 2: Output at Minimum Frequency (the $4^{\text {th }}$ output frequency)	0
	Motor 2: Max Output Frequency (Hz)	$0.00 \sim 600.00 \mathrm{~Hz}$	$\begin{aligned} & 60.001 \\ & 50.00 \end{aligned}$
	Motor 2: Max Output Voltage (V)	230 V models: $0.0 \mathrm{~V} \sim 255.0 \mathrm{~V}$ 460 V models: $0.0 \mathrm{~V} \sim 510.0 \mathrm{~V}$	$\begin{aligned} & 200.0 \\ & 400.0 \\ & \hline \end{aligned}$
	Mid-point Frequency 1 of Motor 2	$0.00 \sim 600.00 \mathrm{~Hz}$	3
	Mid-point Voltage 1 of Motor 2	230 V models: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$ 460 V models: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$	$\begin{aligned} & 110 / \\ & 220 \end{aligned}$
	Mid-point Frequency 2 of Motor 2	$0.00 \sim 600.00 \mathrm{~Hz}$	0.50
	Mid-point Voltage 2 of Motor 2	230 V models: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$ 460 V models: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$
	Min. Output Frequency of Motor 2	$0.00 \sim 600.00 \mathrm{~Hz}$	0.00
	Min. Output Voltage of Motor 2	230 V models: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$ 460 V models: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$
	V/f Curve Selection	0 : normal V/F curve 1: Curve to the power of 1.5 2: Curve to the power of 2	0
	Optimal Acceleration/Deceleration Setting	0: Linear accel. /decel. 1: Auto accel., Linear decel. 2: Linear accel., Auto decel. 3: Auto accel. / decel. 4: Linear, stall prevention by auto accel./decel. (limit by Pr.01-12 to 01-21)	0
	Time Unit for Accel. /Decel. and S Curve	0: Unit: 0.01 sec 1: Unit: 0.1 sec	0
	CANopen Quick Stop Time	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00 \sim 600.00 \mathrm{sec} \\ & \text { Pr. } 01-45=1: 0.0 \sim 6000.0 \mathrm{sec} \end{aligned}$	1.00

02 Digital Input/Output Parameters

Parameter	Explanation	Settings	Factory Setting
02-00	2-wire/3-wire Operation Control	0: 2-wire mode, power on for operation control 1: 2-wire mode 2, power on for operation control 2: 3-wire, power on for operation control	0
02-01	Multi-function Input Command 1 (MI1)	0: No function	1
02-02	Multi-function Input Command 2 (MI2)	1: Multi-step speed command $1 /$ multi-step position command 1	2
02-03	Multi-function Input Command 3 (MI3)	2: Multi-step speed command $2 /$ multi-step position command 2	3
02-04	Multi-function Input Command 4 (MI4)	3: Multi-step speed command 3/multi-step position command 3	4
02-05	Multi-function Input Command 5 (MI5)	4: Multi-step speed command 4/multi-step position command 4	0
02-06	Multi-function Input Command 6 (MI6)	5: Reset	0
02-07	Multi-function Input Command 7 (MI7)	6: JOG command (By KPC-CC01 or external control)	0
02-08	Multi-function Input Command 8 (MI8)	7: Acceleration/deceleration speed inhibit	0
02-26	Input terminal of I/O extension card (MI10)	8: The $1^{\text {st }}, 2^{\text {nd }}$ acceleration/deceleration time selection	0
02-27	Input terminal of I/O extension card (MI11)	9: The $3^{\text {rd }}, 4^{\text {th }}$ acceleration/deceleration time selection	0
02-28	Input terminal of I/O extension card (MI12)	10: EF Input (Pr.07-20)	0
02-29	Input terminal of I/O extension card (MI13)	11: B.B input from external (Base Block)	0
02-30	Input terminal of I/O extension card (MI14)	12: Output stop	0
02-31	Input terminal of I/O extension card (MI15)	13: Cancel the setting of optimal accel. /decel time	0
		14: Switch between motor 1 and motor 2	
		15: Operation speed command from AVI1	
		16: Operation speed command from ACl	
		17: Operation speed command from AVI2	
		18: Emergency stop (Pr.07-20)	
		19: Digital up command	
		20: Digital down command	
		21: PID function disabled	
		22: Clear counter	
		23: Input the counter value (MI6)	
		24: FWD JOG command	
		25: REV JOG command	
		27: ASR1/ASR2 selection	
		28: Emergency stop (EF1)	
		29: Signal confirmation for Y-connection	
		30: Signal confirmation for Δ-connection	
		38: Disable EEPROM write function	
		40: Force coast to stop	
		41: HAND switch	
		42: AUTO switch	
		44~47: Reserved	
		49: Drive enable	
		51: Selection for PLC mode bit0	

	Parame	Explanation	Settings	Factory Setting
			52: Selection for PLC mode bit1	
			53: Trigger CANopen quick stop	
			54: UVW Magnetic Contactor On/Off	
			55: Brake Released Signal	
			56: :LOC/REM Selection	
			57: Reserved	
			58: Enable fire mode (with RUN Command)	
			59: Enable fire mode (without RUN Command)	
			60: All motors disabled	
			61: Motor\#1 disabled	
			62: Motor\#2 disabled	
			63: Motor\#3 disabled	
			64: Motor\#4 disabled	
			65: Motor \#5 disabled	
			66: Motor\#6 disabled	
			67: Motor\#7 disabled	
			68: Motor\#8 disabled	
			69~70 : Disabled	
	02-09	UP/DOWN key mode	0 : up/down by the accel. /decel. time 1: up/down constant speed (Pr.02-10)	0
	02-10	Constant speed. The Accel. /Decel. Speed of the UP/DOWN Key	0.01~1.00Hz/ms	0.01
	02-11	Multi-function Input Response Time	0.000~30.000 seconds	0.005
	02-12	Dgital Input Operation Setting	0000h ~ FFFFh (0: OFF; 1: ON)	0
	02-13	RLY1: Multi Output Terminal	0 : No function	11
	02-14	RLY2: Multi Output Terminal	1: Operation Indication	1
	02-15	RLY3: Multi Output Terminal	2: Operation speed attained	0
	$\begin{aligned} & \text { 02-16~ } \\ & \text { 02-17 } \end{aligned}$	Reserved		
	02-36	Expansion Card Output Terminal (MO10)	4: Desired frequency attained 2 (Pr.02-24)	0
	02-37	Expansion Card Output Terminal (MO11)	5: Zero speed (Frequency command)	0
	02-38	Expansion Card Output Terminal (MO12)	6: Zero speed, include STOP(Frequency command)	0
	02-39	Output terminal of the I/O extension card (MO13)	7: Over torque 1	0
	02-40	Output terminal of the I/O extension card (MO14)	8: Over torque 2	0
	02-41	Output terminal of the I/O extension card (MO15)	9: Drive is ready	0
	02-42	Output terminal of the I/O extension card (MO16)	10: Low voltage warning (LV) (Pr.06-00)	0
	02-43	Output terminal of the I/O extension card (MO17)	11: Malfunction indication	0
	02-44	Output terminal of the I/O extension card (MO18)	12: Mechanical brake release(Pr.02-32)	0
	02-45	Output terminal of the I/O extension card (MO19)	13: Overheat warning (Pr.06-15)	0

	Parameter	Explanation	Settings	Factory Setting
N	02-46	Output terminal of the I/O extension card (MO20)	14: Software brake signal indication(Pr.07-00)	0
			15: PID feedback error	
			16: Slip error (oSL)	
			17: Terminal count value attained, does not return to 0 (Pr.02-20)	
			18: Preliminary count value attained, returns to 0 (Pr.02-19)	
			19: External Base Block input (B.B.)	
			20: Warning output	
			21: Over voltage warning	
			22: Over-current stall prevention warning	
			23: Over-voltage stall prevention warning	
			24: Operation mode indication	
			25: Forward command	
			26: Reverse command	
			27: Output when current >= Pr.02-33	
			28: Output when current < Pr.02-33	
			29: Output when frequency $>=$ Pr.02-34 02-34)	
			30: Output when frequency < Pr.02-34	
			31: Y-connection for the motor coil	
			32: \triangle-connection for the motor coil	
			33: Zero speed (actual output frequency)	
			34: Zero speed include stop(actual output frequency)	
			35: Error output selection 1(Pr.06-23)	
			36: Error output selection 2(Pr.06-24)	
			37: Error output selection 3(Pr.06-25)	
			38: Error output selection 4(Pr.06-26)	
			40: Speed attained (including Stop)	
			44: Low current output	
			45: UVW Magnetic Contactor enabled	
			47: Brake output closed	
			50: Output for CANopen control	
			51: Output for RS485	
			52: Output for communication card	
			53: Fire mode indication	
			54: Bypass fire mode indication	
			55: Motor \#1 Output	
			56: Motor \#2 Output	
			57: Motor \#3 Output	
			58: Motor\#4 Output	
			59: Motor\#5 Output	
			60: Motor \#6 Output	
			61: Motor\#7 Output	
			62: Motor\#8 Output	
N	02-18	Multi output direction	000h ~ FFFh (0: N.O.; 1: N.C.)	0
N	02-19	Terminal counting value attained	0~65500	0
N	02-20	Preliminary counting value attained (not return to 0)	0~65500	0
	02-21	Reserved		
N	02-22	Desired Frequency Attained 1	$0.00 \sim 600.00 \mathrm{~Hz}$	$\begin{aligned} & 60.00 / \\ & 50.00 \end{aligned}$
N	02-23	The Width of the Desired Frequency Attained 1	$0.00 \sim 600.00 \mathrm{~Hz}$	2.00
N	02-24	Desired Frequency Attained 2	$0.00 \sim 600.00 \mathrm{~Hz}$	$\begin{aligned} & 60.00 / \\ & 50.00 \end{aligned}$

03 Analog Input / Output Parameter

	Parameter	Explanation	Settings	Factory Setting
N	03-00	Analog Input 1 (AVI1)	0: No function 1: Frequency command (torque limit under torque control mode) 4: PID target value 5: PID feedback signal 6: PTC thermistor input value 11: PT100 thermistor input value 12~17: Reserved	1
N	03-01	Analog Input 2(ACI)		
N	03-02	Analog Input 3 (AVI2)		
N	03-03	AVI1 Analog Input Bias	-100.0~100.0\%	0
N	03-04	ACI Analog Input Bias	-100.0~100.0\%	0
N	03-05	AVI2 Analog Positive Voltage Input Bias	-100.0~100.0\%	0
N	03-06	Reserved		
N	03-07	AVI1 positive/negative bias mode	0 : No bias 1: Lower than bias=bias 2: Greater than bias=bias 3: The absolute value of the bias voltage while serving as the center 4: Serve bias as the center	0
N	03-08	ACl positive/negative bias mode		
N	03-09	AVI2 positive/negative bias mode		
	03-10	Analog Frequency Command for Reverse Run	0 : Negative frequency input is disabled. Forward and reverse motions are controlled by digital keypad or by external terminal.	0
			1: Negative frequency input is enabled. Forward motion when positive frequency, reverse motion when negative frequency. Forward and reverse motions are not controlled by digital keypad or by external terminal.	
N	03-11	Analog Input Gain 1 (AVI 1)	-500.0 ~ 500.0 \%	100.0
N	03-12	Analog Input Gain 2 (ACI)	$-500.0 \sim 500.0 \%$	100.0
N	03-13	Analog Input Gain 3 (AVI 2)	$-500.0 \sim 500.0 \%$	100.0
N	03-14	Analog Input Gain 4 (AVI 2)	$-500.0 \sim 500.0 \%$	100.0
N	03-15	Analog Input Filter Time (AVI1)	0.00~20.00 seconds	0.01
N	03-16	Analog Input Filter Time (ACI)	0.00~20.00 seconds	0.01
N	03-17	Analog Input Filter Time (AVI2)	0.00~20.00 seconds	0.01
N	03-18	Addition Function of the Analog Input	0 : Disable addition function (AVI1, ACI, AVI2) 1: Enable addition function	0
N	03-19	Loss of the ACI Signal	0: Disable 1: Continue operation at the last frequency 2: Decelerate to OHz 3: Stop immediately and display ACE	0
N	03-20	Multi-function Output 1 (AFM1)	0: Output frequency (Hz)	0
N	03-23	Multi-function Output 2 (AFM2)	1: Frequency command (Hz)	0
			2: Motor speed (Hz)	
			3: Output current (rms)	
			4: Output voltage	
			5: DC Bus voltage	
			6: Power factor	
			7: Power	
			9 : AVI1 \%	

04 Multi-step Speed Parameters

	Parameter	Explanation	Settings	Factory Setting
N	04-00	1st Step Speed Frequency	0.00~600.00Hz	0
N	04-01	2nd Step Speed Frequency		
N	04-02	3rd Step Speed Frequency		
N	04-03	4th Step Speed Frequency		
N	04-04	5th Step Speed Frequency		
N	04-05	6th Step Speed Frequency		
N	04-06	7th Step Speed Frequency		
N	04-07	8th Step Speed Frequency		
N	04-08	9th Step Speed Frequency		
N	04-09	10th Step Speed Frequency		
N	04-10	11th Step Speed Frequency		
N	04-11	12th Step Speed Frequency		
N	04-12	13th Step Speed Frequency		
N	04-13	14th Step Speed Frequency		
N	04-14	15th Step Speed Frequency		
	$\begin{aligned} & \text { 04-15~ } \\ & 04-49 \end{aligned}$	Reserved		
	04-50	PLC Buffer 1	0~65535	0
	04-51	PLC Buffer 2	0~65535	0
	04-52	PLC Buffer 3	0~65535	0
	04-53	PLC Buffer 4	0~65535	0
	04-54	PLC Buffer 5	0~65535	0
	04-55	PLC Buffer 6	0~65535	0
	04-56	PLC Buffer 7	0~65535	0
	04-57	PLC Buffer 8	0~65535	0
	04-58	PLC Buffer 9	0~65535	0
	04-59	PLC Buffer 10	0~65535	0

05 Motor Parameters

Parameter	Explanation	Settings	
	Delay Time for Y-connection/ \triangle-connecti on Switch of Induction Motor	$0.000 \sim 60.000$ seconds	Setting

06 Protection Parameters

	Parameter	Explanation	Settings	Factory Setting
N	06-00	Low Voltage Level	230V: 160.0~220.0Vdc Frame E and above : 190.0~220.0V 460V : 320.0~440.0Vdc Frame E and above: 380.0~440.0V	$\begin{aligned} & 180 \\ & 360 \\ & \text { Frame } \\ & \text { E and } \\ & \text { above: } \\ & 200.0 / 4 \\ & 00.0 \end{aligned}$
N	06-01	Over-voltage Stall Prevention	$\begin{aligned} & 230 \mathrm{~V}: 350.0 \sim 450.0 \mathrm{Vdc} \\ & 460 \mathrm{~V}: 700.0 \sim 900.0 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & 380.0 \\ & 760.0 \end{aligned}$
N	06-02	Selection for over-voltage stall prevention	0 : Traditional over-voltage stall prevention 1: Smart over-voltage prevention	0
N	06-03	Over-current Stall Prevention during Acceleration	Normal duty: 0~160\%(100\%: drive's rated current); Light duty: 0~130\%(100\%: drive's rated current)	Normal duty:12 0; Light duty:12 0
N	06-04	Over-current Stall Prevention during Operation	Normal duty: 0~160\%(100\%: drive's rated current); Light duty: 0~130\%(100\%: drive's rated current)	Normal duty:12 0; Light duty:12 0
N	06-05	Accel. /Decel. Time Selection of Stall Prevention at Constant Speed	0 : by current accel/decel time 1: by the 1st accel/decel time 2: by the 2nd accel/decel time 3: by the 3rd accel/decel time 4: by the 4th accel/decel time 5: by auto accel/decel	0
N	06-06	Over-torque Detection Selection (OT1)	0: No function 1: Over-torque detection during constant speed operation, continue to operate after detection 2: Over-torque detection during constant speed operation, stop operation after detection 3: Over-torque detection during operation, continue to operate after detection 4: Over-torque detection during operation, stop operation after detection	0
N	06-07	Over-torque Detection Level (OT1)	10~200\% (100\%: drive's rated current)	120
N	06-08	Over-torque Detection Time (OT1)	0.0~60.0 seconds	0.1
N	06-09	Over-torque Detection Selection (OT2)	0: No function 1: Over-torque detection during constant speed operation, continue to operate after detection 2: Over-torque detection during constant speed operation, stop operation after detection 3: Over-torque detection during operation, continue to operation after detection 4: Over-torque detection during operation, stop operation after detection	0
N	06-10	Over-torque Detection Level (OT2)	10~200\% (100\%: drive's rated current)	120
N	06-11	Over-torque Detection Time (OT2)	0.0~60.0 seconds	0.1
N	06-12	Maximum Torque Limit	0~200\% (100\%: drive's rated current)	150\%

	Parameter	Explanation	Settings	Factory Setting
N	06-13	Electronic Thermal Relay Selection (Motor 1)	0 : Motor with constant torque output 1: Motor with variable torque output 2: Electronic Thermal Relay disabled	2
N	06-14	Electronic Thermal Characteristic for Motor 1	30.0~600.0 seconds	60.0
N	06-15	Heat Sink Over-heat (OH) Warning	$0.0 \sim 110.0^{\circ} \mathrm{C}$	100.0
N	06-16	Stall Prevention Limit Level	0~100\% (Parameter06-03, Parameter06-04)	50
	06-17	Current Error Record	0: No fault record	0
	06-18	Second Most Recent Error Record	1: Over-current during acceleration (ocA)	0
	06-19	Third Most Recent Error Record	2: Over-current during deceleration (ocd)	0
	06-20	Fourth Most Recent Error Record	3: Over-current during constant speed(ocn)	0
	06-21	Fifth Most Recent Error Record	4: Ground fault (GFF)	0
	06-22	Sixth Most Recent Error Record	5: IGBT short-circuit (occ)	0
			6: Over-current at stop (ocS)	
			7: Over-voltage during acceleration (ovA)	
			8: Over-voltage during deceleration (ovd)	
			9: Over-voltage during constant speed (ovn)	
			10: Over-voltage at stop (ovS)	
			11: Low-voltage during acceleration (LvA)	
			12: Low-voltage during deceleration (Lvd)	
			13: Low-voltage during constant speed (Lvn)	
			14: Stop mid-low voltage (LvS)	
			15: Phase loss protection (PHL)	
			16: IGBT over-heat (oH1)	
			17: Capacitance over-heat (oH2) (over 40hp)	
			18: tH1o (TH1 open: IGBT over-heat protection error)	
			19: tH2o (TH2 open: capacitance over-heat protection error)	
			20: Reserved	
			21: Drive over-load (oL) (When current is 150% of the rated current, the drive will be overloaded.)	
			22: Electronics thermal relay 1 (EoL1)	
			23: Electronics thermal relay 2 (EoL2)	
			24: Motor overheat (0H3) (PTC)	
			25: Reserved	
			26: Over-torque 1 (ot1)	
			27: Over-torque 2 (ot2)	
			28: Under current 1 (uc)	
			29: Reserved	
			30: Memory write-in error (cF1)	
			31: Memory read-out error (cF2)	
			32: Reserved	
			33: U-phase current detection error (cd1)	
			34: V-phase current detection error (cd2)	
			35: W-phase current detection error (cd3)	
			36: Clamp current detection error (Hd0)	
			37: Over-current detection error (Hd1)	
			38: Over-voltage detection error (Hd2)	
			39: Ground current detection error (Hd3)	
			40: Auto tuning error (AuE)	
			41: PID feedback loss (AFE)	
			42~47 Reserved	

Chapter 11 Summary of Parameter Settings

	Parameter	Explanation	Settings	Factory Setting
			48: ACI reference input loss (ACE)	
			49: External fault input (EF)	
			50: Emergency stop (EF1)	
			51: External Base Block (BB)	
			52: Password Error (Pcode)	
			53 : Reserved	
			54: Communication error (CE1)	
			55: Communication error (CE2)	
			56: Communication error (CE3)	
			57: Communication error (cE4)	
			58: Communication Time-out (CE10)	
			59: PU Time-out (cP10)	
			60: Brake transistor error (bF)	
			61: Y-connection/ \triangle-connection switch error (ydc)	
			62: Decel. Energy Backup Error (dEb)	
			63: Slip error (oSL)	
			64~65: Reserved	
			73: External safety gate S1	
			74: FIRE mode output	
			79: U phase over current (Uocc)	
			80: V phase over current (Vocc)	
			81: W phase over current (Wocc)	
			82: U phase output phase loss (OPHL)	
			83: V phase output phase loss (OPHL)	
			84: W phase output phase loss (OPHL)	
			101: CANopen software disconnect1 (CGdE)	
			102: CAN open software disconnect2 (CHbE)	
			103: CANopen synchronous error (CSYE)	
			104: CANopen hardware disconnect (CbFE)	
			105: CANopen index setting error (CIdE)	
			106: CANopen slave station number setting error (CAdE)	
			107: CANopen index setting exceed limit (CFrE)	
N	06-23	Fault Output Option 1	$0 \sim 65535$ (refer to bit table for fault code)	0
N	06-24	Fault Output Option 2	$0 \sim 65535$ (refer to bit table for fault code)	0
N	06-25	Fault Output Option 3	$0 \sim 65535$ (refer to bit table for fault code)	0
N	06-26	Fault Output Option 4	0~65535(refer to bit table for fault code)	0
N	06-27	Electronic Thermal Relay Selection 2 (Motor 2)	0 : Motor with constant torque output 1: Motor with variable torque output 2: Electronic Thermal Relay disabled	2
N	06-28	Electronic Thermal Operating Time of Motor 2 (Seconds)	30.0~600.0(Seconds)	60.0
N	06-29	PTC Detection Selection	0 : Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning	0
N	06-30	PTC Level	0.0~100.0\%	50.0
N	06-31	Frequency Command when Malfunction	$0.00 \sim 655.35 \mathrm{~Hz}$	Read Only
	06-32	Output Frequency when Malfunction	$0.00 \sim 655.35 \mathrm{~Hz}$	Read Only
	06-33	Output Voltage when Malfunction	$0.0 \sim 6553.5 \mathrm{~V}$	Read Only
	06-34	DC Voltage at Malfunction	$0.0 \sim 6553.5 \mathrm{~V}$	Read Only
	06-35	Output Current at Malfunction	0.00~655.35 Amp	Read Only

	Parameter	Explanation	Settings	Factory Setting
	06-36	IGBT Temperature at Malfunction	$0.0 \sim 6553.5{ }^{\circ} \mathrm{C}$	$\begin{array}{\|l\|} \hline \text { Read } \\ \text { Only } \end{array}$
	06-37	Capacitance Temperature at Malfunction	0.0~6553.5 ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Read } \\ & \text { Only } \end{aligned}$
	06-38	Motor Speed in rpm at Malfunction	0~65535	$\begin{aligned} & \text { Read } \\ & \text { Only } \end{aligned}$
	06-39	Reserved		
	06-40	Status of Multi-function Input Terminal when Malfunction	0~65535	Read Only
	06-41	Status of Multi-function Output Terminal when Malfunction	0~65535	$\begin{aligned} & \text { Read } \\ & \text { Only } \end{aligned}$
	06-42	Drive Status when Malfunction	0~65535	$\begin{aligned} & \text { Read } \\ & \text { Only } \end{aligned}$
	06-43	Reserved		
	06-44	Reserved		
*	06-45	Action for detected Output Phase Loss (OPhL)	0 : Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning	3
*	06-46	Time of detected Output Phase Loss	0~65.535 seconds	0.5
*	06-47	Detected Current Bandwidth	0~655.35\%	1.0
*	06-48	DC Brake Time of Output Phase Loss	0~65.535 seconds	0.1
	06-49	Reserved		
	06-50	Time of detected Input Phase Loss	0.00~600.00 seconds	0.20
	06-51	Reserved		
	06-52	Ripple of the detected Input Phase Loss' Ripple	230 V models: $0.0 \sim 160 \mathrm{Vdc}$ 460 V models : $0.0 \sim 320 \mathrm{Vdc}$	30/60
*	06-53	Action for detected Input Phase Loss (OrP)	0 : warn and ramp to stop 1: warn and coast to stop	0
	06-54	Reserved		
	06-55	Derating Protection	0: Constant rated current and limit carrier wave by loaded current and temperature 1: Constant carrier frequency and limit loaded current by setting carrier wave 2: Constant rated current(same as setting 0), but current limit is closed	0
N	06-56	PT100 Detection Level 1	0~10000 v	5000
*	06-57	PT100 Detection Level 2	0~10000 v	7000
*	06-58	PT100 Level 1 Frequency Protect	$0 \sim 600.00 \mathrm{~Hz}$	0
	06-59	Delay time of PT100 Level 1 Frequency Protection	0~6000 seconds	60
\star	06-60	Software Detection GFF Current Level (\% rated current of the drive)	0~6553.5\%	60.0

Chapter 11 Summary of Parameter Settings

	Parameter	Explanation	Settings	Factory Setting
*	06-61	Software detection of GFF Low pass Filter gain	0~655.35 sec	0.10
N	06-62	Disable Level of dEb	230 V models: $0 \sim 220.0 \mathrm{Vdc}$ 460 V models: $0 \sim 440.0 \mathrm{Vdc}$	$\begin{aligned} & 180.0 / \\ & 360.0 \end{aligned}$
	06-63	Fault Record 1 (Day)	0~65535 days	Read Only
	06-64	Fault Record 1 (Min)	0~1439 min	Read Only
	06-65	Fault Record 2 (Day)	0~65535 days	Read Only
	06-66	Fault Record 2 (Min)	0~64799 min	Read Only
	06-67	Fault Record 3 (Day)	0~65535 days	Read Only
	06-68	Fault Record 3 (Min)	0~1439 min	Read Only
	06-69	Fault Record 4 (Day)	0~65535 days	Read Only
	06-70	Fault Record 4 (Min)	0~1439 min	Read Only
	06-71	Low Current Setting Level	0~100.0\%	0
	06-72	Low Current Detection Time	0~360.00 seconds	0
	06-73	Options when low current occurs	0 : No function 1 : Warn and coast to stop 2 : Warn and ramp to stop by 2 nd deceleration time 3 : Warn and operation continues	0
	06-74	Reserved		
	06-76	Reserved		
	06-80	Fire mode	0 : No function 1: Forward operation 2: Reverse Operation	0
	06-81	Operating Frequency when running Fire Mode(Hz)	0.00 to 60000 Hz	6000
	06-82	Bypass Fire Mode enabled	0: Disable Bypass 1: Enable Bypass	0
	06-83	Delayed Time when Bypass Fire Mode	0.0 to 6550.0 sec	0
	06-84	Auto reset counter of Fire Mode	0~10	0
	06-85	Length of time to reset auto-counter (seconds)	0.0 to 6000.0 sec	600

07 Special Parameters

	Parameter	Explanation	Settings	Factory Setting
N	07-00	Setup Software Brake Level	230V series: 350.0~450.0Vdc 460V series : 700.0~900.0Vdc	$\begin{aligned} & 380.0 \\ & 760.0 \end{aligned}$
N	07-01	DC Brake Current Level	0~100\%	0
N	07-02	DC Brake Time at Start-up	0.0~60.0 seconds	0.0
N	07-03	DC Brake Time at Stop	$0.0 \sim 60.0$ seconds	0.0
N	07-04	Startup Frequency for DC Brake	0.00~600.00Hz	0.00
N	07-05	Voltage Increasing Percentage	0~200\%	100\%
N	07-06	Restart after Momentary Power Down	0: Stop operation 1: Speed search starting from last speed before the moment of power down. 2: Speed search starting from minimum output frequency	0
N	07-07	Maximum Power Loss Duration	0.1~20.0 seconds	2.0
N	07-08	Base Block Time	0.1~5.0 seconds	0.5
N	07-09	Current Limit for Speed Search	20~200\%	100
N	07-10	Base Block Speed Search (oc, ov, bb)	0 : Stop operation 1: Speed search starting from last speed before the moment of base block. 2: Speed search starting from minimum output frequency	0
N	07-11	\# of Auto Reset after Errors Occurred	0~10	0
N	07-12	Speed Search while Start-up	0: Disable 1: Speed search starting from maximum output frequency 2: Speed search starting from start-up motor frequency 3: Speed search starting from minimum output frequency	0
N	07-13	Deceleration Time at Momentary Power Down (dEb function: Deceleration Energy Backup)	0: Disable 1: 1st decel. time 2: 2nd decel. time 3: 3rd decel. time 4: 4th decel. time 5: system decel. time 6: Auto decel. time	0
N	07-14	DEB Return Time	0.0~25.0 sec (0~250)	0
N	07-15	Dwell Time at Accel.	0.00~600.00sec(0~60000)	0
N	07-16	Dwell Frequency at Accel.	0.00~600.00Hz(0~60000)	0
N	07-17	Dwell Time at Decel.	0.00~600.00sec(0~60000)	0
N	07-18	Dwell Frequency at Decel.	0.00~600.00Hz(0~60000)	0
N	07-19	Fan Cooling Control	0 : Fan always ON 1: 1 minute after the AC motor drive stops, fan will be OFF 2: When the AC motor drive runs, the fan is ON. When the AC motor drive stops, the fan is OFF 3: Fan turns ON when the preliminary heat sink's temperature reached around $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$. 4: Fan always OFF	0
N	07-20	Emergency Stop (EF) \& Force to Stop Selection	0 : Coast stop 1: By deceleration Time 1 2: By deceleration Time 2 3: By deceleration Time 3	0

	Parameter	Explanation	Settings	Factory Setting
			4: By deceleration Time 4 5: System Deceleration 6: Automatic Deceleration	
N	07-21	Auto Energy-sAVI1ng Operation	0: Disable 1: Enable	0
N	07-22	Energy-sAVI1ng Gain	10~1000\%	100
N	07-23	Auto Voltage Regulation(AVR) Function	0: Enable AVR 1: Disable AVR 2: Disable AVR during deceleration	0
N	07-24	Filter Time of Torque Command (V/F and SVC control mode)	0.001~10.000seconds	0.020
N	07-25	$\begin{aligned} & \text { Filter Time of Slip } \\ & \text { Compensation (V/F and } \\ & \text { SVC control mode) } \end{aligned}$	0.001~10.000 seconds	0.100
N	07-26	Torque Compensation Gain (V/F and SVC control mode)	0~10	0
N	07-27	Slip Compensation Gain (V/F and SVC control mode)	0.00~10.0	0.00
N	07-28	Reserved		
N	07-29	Slip Deviation Level	$\begin{aligned} & \text { 0.0~100.0\% } \\ & \text { 0: Not-detectable } \end{aligned}$	0
N	07-30	Detection Time of Slip Deviation	0.0~10.0 seconds	1.0
N	07-31	Over Slip Treatment	0 : Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning	0
N	07-32	Motor Hunting Gain	0~10000	1000
	07-33	Recovery Time to Pr.07-11 (\# of auto reset after error occurred)	00~60000 seconds	60.0

08 High-function PID Parameters

	Parameter	Explanation	Settings	Factory Setting
N	08-00	Input Terminal for PID feedback	0: No function 1: Negative PID feedback: input from external terminal AVI1 (Pr.03-00) 4: Positive PID feedback from external terminal AVI1 (Pr.03-00)	0
N	08-01	Proportional Gain (P)	0.0~100.0\%	1.0
N	08-02	Integral Time (I)	0.00~100.00 seconds	1.00
N	08-03	Derivative Time (D)	0.00~1.00seconds	0.00
N	08-04	Upper Limit of Integral Control	0.0~100.0\%	100.0
N	08-05	PID Output Frequency Limit	0.0~110.0\%	100.0
	08-06	PID Feedback Value	0.00 ~ 200.00\%	Read Only
N	08-07	PID Delay Time	0.0~35.0 seconds	0.0
$N$$N$	08-08	Feedback Signal Detection Time	0.0~3600.0 seconds	0.0
	08-09	Options on Feedback Error	0 : Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: Warn and operate at last frequency	0
N	08-10	Sleep Reference Point	$0.00 \sim 600.00 \mathrm{~Hz}$ or 0~200.00\%	0.00
N	08-11	Wake-up Reference Point	0.00 $\sim 600.00 \mathrm{~Hz}$ or 0~200.00\%	0.00
N	08-12	Sleep Time	$0.0 \sim 600.00$ seconds	0.0
N	08-13	PID Deviation Level	1.0~50.0\%	10.0
N	08-14	PID Deviation Time	0.1~300.0 seconds	5.0
N	08-15	Filter Time for PID Feedback	0.1~300.0 seconds	5.0
N	08-16	PID Compensation Selection	0: Parameter setting 1: Analog input	0
N	08-17	PID Compensation	-100.0~+100.0\%	0
	08-18	Setting of Sleep mode function	0: Follow PID output command 1: Follow PID feedback signal	0
N	08-19	Integral Limit during Wakeup	0~200.0\%	50.0\%
	08-20	PID Mode Selection	0: Serial connection 1: Parallel connection	0
	08-21	Enable PID to Change Operation Direction	0: Operation direction cannot be changed 1: Operation direction can be changed	0
	08-22	Wakeup Delay Time	$0 \sim 600.00 \mathrm{sec}$	0.00

09 Communication Parameters

	Parameter	Explanation	Settings	Factory Setting
N	09-00	COM1 Communication Address	1~254	1
N	09-01	COM1 Transmission Speed	4.8~115.2Kbps	9.6
N	09-02	COM1 Transmission Fault Treatment	0 : Warn and continue operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning and continue operation	3
N	09-03	COM1 Time-out Detection	0.0~100.0 seconds	0.0
N	09-04	COM1 Communication Protocol	0: 7N1 (ASCII) 1: 7N2 (ASCII) 2: 7E1 (ASCII) 3: 701 (ASCII) 4: 7E2 (ASCII) 5: 7 O 2 (ASCII) 6: 8N1 (ASCII) 7: 8N2 (ASCII) 8: 8E1 (ASCII) 9: 801 (ASCII) 10: 8E2 (ASCII) 11: 802 (ASCII) 12: 8N1 (RTU) 13: 8N2 (RTU) 14: 8E1 (RTU) 15: 801 (RTU) 16: 8E2 (RTU) 17: 802 (RTU)	1
	$\begin{aligned} & \text { 09-05 } \\ & \text { 09-08 } \end{aligned}$	Reserved		
N	09-09	Response Delay Time	0.0~200.0ms	2.0
N	09-10	Main Communication Frequency (Hz)	$0.00 \sim 600.00 \mathrm{~Hz}$	60.00
N	09-11	Block Transfer 1	0~65535	0
N	09-12	Block Transfer 2	0~65535	0
N	09-13	Block Transfer 3	0~65535	0
N	09-14	Block Transfer 4	0~65535	0
N	09-15	Block Transfer 5	0~65535	0
N	09-16	Block Transfer 6	0~65535	0
N	09-17	Block Transfer 7	0~65535	0
N	09-18	Block Transfer 8	0~65535	0
N	09-19	Block Transfer 9	0~65535	0
N	09-20	Block Transfer 10	0~65535	0
N	09-21	Block Transfer 11	0~65535	0
N	09-22	Block Transfer 12	0~65535	0
N	09-23	Block Transfer 13	0~65535	0
N	09-24	Block Transfer 14	0~65535	0
N	09-25	Block Transfer 15	0~65535	0
N	09-26	Block Transfer 16	0~65535	0
	$\begin{aligned} & 09-27 \\ & \sim \\ & 09-29 \end{aligned}$	Reserved		
	09-30	Communication Decoding Method	0 : Decoding Method 1 1 : Decoding Method 2	1

Parameter	Explanation	Settings	Factory Setting
09-31	Internal Communication Protocol	0: Modbus 485 1: Internal Communication Slave 1 2: Internal Communication Slave 2 3: Internal Communication Slave 3 4: Internal Communication Slave 4 5: Internal Communication Slave 5 6: Internal Communication Slave 6 7: Internal Communication Slave 7 8: Internal Communication Slave 8 9: Reserve 10: Internal Communication Master 11: Reserve 12: Internal PLC Control	0
$\begin{aligned} & \text { 09-32~ } \\ & 09-34 \end{aligned}$	Reserved		
09-35	PLC Address	1~254	2
09-36	CANopen Slave Address	$\begin{aligned} & \text { 0: Disable } \\ & \text { 1~127 } \end{aligned}$	0
09-37	CANopen Speed	$\begin{aligned} & 0: 1 \mathrm{M} \\ & 1: 500 \mathrm{k} \\ & 2: 250 \mathrm{k} \\ & \text { 3: 125k } \\ & \text { 4: 100k (Delta Only) } \\ & \text { 5: 50k } \end{aligned}$	0
09-38	Reserved		
09-39	CANopen Warning Record	bit 0 : CANopen Guarding Time out bit 1 : CANopen Heartbeat Time out bit 2 : CANopen SYNC Time out bit 3 : CANopen SDO Time out bit 4 : CANopen SDO buffer overflow bit 5 : Can Bus Off bit 6 : Error protocol of CANopen bit 8 : The setting values of CANopen indexs are fail bit 9 : The setting value of CANopen address is fail bit10 : The checksum value of CANopen indexs is fail	0
09-40	CANopen Decoding Method	0 : Delta defined decoding method 1: CANopen DS402 Standard	1
09-41	CANopen Communication Status	0 : (Node Reset State) 1 : (Com Reset State) 2 : (Boot up State) 3 : (Pre Operation State) 4 : (Operation State) 5 : (Stop State)	0
09-42	CANopen Control Status	0 : (Not Ready For Use State) 1 : (Inhibit Start State) 2 : (Ready To Switch On State) 3 : (Switched On State) 4 : (Enable Operation State) 7 : (Quick Stop Active State) 13 : (Err Reaction Active State) 14 : (Error State)	0
09-43	Reset CAN Initial Idx	bit0: reset address 20XX to 0 . bit1: reset address 264X to 0 bit2: reset address 26AX to 0 bit3: reset address 60XX to 0	65535
09-44	Reserved		
09-45	CANopen Master function	0: Disable; 1: Enable	0

ramet	Explanation	Settings	Factory Setting
9-46	CANopen Master Address	1~127	100
$\begin{aligned} & 09-47 ~ \\ & 09-49 \end{aligned}$	Reserved		
09-50	BACnet Dnet	0~127	10
9-51	BACnet Baud Rate	9.66~76.8 kbps	38.4
9-52	BACnet Device ID L	0~9999	1
9-53	BACnet Device ID H	0~419	0
9-54	Reserved		
09-55	BACnet Max Address	0~127	127
09-56	BACnet Password	0~65535	0
09-60	Identification of Communication Card	0 : No communication card 1: DeviceNet Slave 2: Profibus-DP Slave 3: CANopen Slave 4: Modbus-TCP Slave 5: EtherNet/IP Slave 6~8: Reserved	0
09-61	Firmware Version of Communication Card	Read Only	\#\#
09-62	Product Code	Read Only	\#\#
09-63	Error Code	Read Only	\#\#
$\begin{aligned} & \text { 09-64~ } \\ & 09-69 \\ & \hline \end{aligned}$	Reserved		
09-70	Address of Communication Card	DeviceNet: 0-63 Profibus-DP: 1-125	1
09-71	Communication Card Speed	Standard DeviceNet: 0: 100Kbps 1: 125Kbps 2: 250Kbps 3: 1Mbps (Delta only) Non standard DeviceNet: (Delta only) 0: 10Kbps 1: 20Kbps 2: 50Kbps 3: 100Kbps 4: 125Kbps 5: 250Kbps 6: 500Kbps 7: 800Kbps 8: 1Mbps	2
09-72	Other settings of communication card speed	0 : Disable: this mode, baud rate can only be $0,1,2,3$ in standard DeviceNet speed 1: Enable: this mode, the baud rate of DeviceNet can be same as CANopen (0-8).	0
09-75	IP Configuration of the Communication Card	0: Static IP 1: Dynamic IP (DHCP)	0
09-76	IP Address 1 of the Communication Card	0~255	0
09-77	IP Address 2 of the Communication Card	0~255	0
09-78	IP Address 3 of the Communication Card	0~255	0
09-79	IP Address 4 of the Communication Card	0~255	0
09-80	Address Mask 1 of the Communication Card	0~255	0
09-81	Address Mask 2 of the Communication Card	0~255	0

N	09-82	Address Mask 3 of the Communication Card	0~255	0
N	09-83	Address Mask 4 of the Communication Card	0~255	0
N	09-84	Gateway Address 1 of the Communication Card	0~255	0
N	09-85	Gateway Address 2 of the Communication Card	0~255	0
N	09-86	Gateway Address 3 of the Communication Card	0~255	0
N	09-87	Gateway Address 4 of the Communication Card	0~255	0
N	09-88	Password for Communication Card (Low word)	0~99	0
N	09-89	Password for Communication Card (High word)	0~99	0
N	09-90	Reset Communication Card	0 : No function 1: Reset to return to the factory setting	0
N	09-91	Additional Setting for Communication Card	Bit 0: Enable IP Filter : Bit 1: Enable internet parameters (1bit) Once the setup of internet parameter is done, the Bit 1 will be enabled. But after the parmeters of the communication card are updated, this Bit 1 will be disabled. Bit 2: Enable login password (1bit) When login password is correctly entered, the Bit 2 will be enabled. But after the parameters of the communication card are updated, this Bit 2 will be disabled.	0
N	09-92	Status of Communication Card	Bit 0: Enable password. When the communication card is locked by a password, this Bit 0 will be enabled. When the password is clear, this Bit 0 will be disabled.	0

12 PUMP Parameter

	Parameter	Explanation	Settings	Factory Setting
N	12-00	Circulative Control	0: No operation 1: Fixed Time Circulation (by time) 2: Fixed quantity circulation (by PID) 3: Fixed quantity control 4: Fixed Time Circulation+ Fixed quantity circulation 5: Fixed Time Circulation+ Fixed quantity control	0
N	12-01	Number of motors to be connected	From only 1 and up to 8 motors	1
N	12-02	Operating time of each motor (minutes)	0 to 65500 min	0
N	12-03	Delay Time due to the Acceleration (or the Increment) at Motor Switching	0.0 to 3600.0 sec	10
N	12-04	Delay Time due to the Deceleration (or the Decrement) at Motor Switching (seconds)	0.0 to 3600.0 sec	10
N	12-05	Delay time while fixed quantity circulation at Motor Switching (seconds)	0.0 to 3600.0 sec	100
	12-06	Frequency when switching motors at fixed quantity circulation (Hz)	0.00 to 600.00 Hz	6000
N	12-07	Action to do when Fixed Quantity Circulation breaks down.	0 : Turn off all output 1: Motors powered by mains electricity continues to operate.	0
N	12-08	Frequency when stopping auxiliary motor (Hz)	0.00 to 600.00 Hz	0

Chapter 12 Description of Parameter Settings

00 Drive Parameters

The parameter can be set during operation.
00 - 00 ID Code of the AC Motor Drive
Factory Setting: \#.\#
Settings Read Only
00-01 Display AC Motor Drive Rated Current
Factory Setting: \#.\#
Settings Read Only
1 Pr. 00-00 displays the identity code of the AC motor drive. Using the following table to check if Pr.00-01 setting is the rated current of the AC motor drive. Pr.00-01 corresponds to the ID code in Pr.00-00.
[a] The factory setting is the rated current for light duty. Set Pr.00-16 to 1 to display the rated current for normal duty.

230 V series											
Frame	A					B			C		
kW	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30
HP	1.0	2.0	3.0	5.0	7.5	10	15	20	25	30	40
ID Code of the AC Motor Drive	4	6	8	10	12	14	16	18	20	22	24
Rated Current of Light Duty (A)	5	7.5	10	15	21	31	46	61	75	90	105
Rated Current of Normal Duty (A)	3	5	8	11	17	25	33	49	65	75	90

Frame	D		E		
kW	37	45	55	75	90
HP	50	60	75	100	125
ID Code of the AC Motor Drive	26	28	30	32	34
Rated Current of Light Duty (A)	146	180	215	276	322
Rated Current of Normal Duty (A)	120	146	180	215	255

460 V series													
Frame	A							B			C		
kW	0.75	1.5	2.2	3.7	4.0	5.5	7.5	11	15	18.5	22	30	37
HP	1	2	3	5	5.5	7.5	10	15	20	25	30	40	50
ID Code of the AC Motor Drive	5	7	9	11	93	13	15	17	19	21	23	25	27
Rated Current of Light Duty (A)	3	3.7	5	7.5	10.5	12	14	22.5	30	36	45	56	72
Rated Current of Normal Duty (A)	1.7	3.0	4.0	6.0	9.0-	10.5	12	18	24	32	38	45	60

Frame	D			E		F		G		H			
kW	45	55	75	90	110	132	160	185	220	280	315	355	400
HP	60	75	100	125	150	175	215	250	300	375	425	475	536
ID Code of the AC Motor Drive	29	31	33	35	37	39	41	43	45	47	49	51	53
Rated Current of Light Duty (A)	91	110	144	180	220	246	310	343	460	530	616	683	770
Rated Current of Normal Duty (A)	73	91	110	150	180	220	260	310	370	460	550	616	683

00-02 Parameter Reset

Settings	0: No Function
1: Write protection for parameters	
5: Reset KWH display to 0.	
	6: Reset PLC (including CANopen Master Index)
7: Reset CANopen Index (Slave)	
8: keypad lock	
9: All parameters are reset to factory settings(base frequency is 50 Hz$)$	
10: All parameters are reset to factory settings(base frequency is 60 Hz$)$	

When it is set to 1 , all parameters are read only, except Pr.00-02~00-08 and password set up is available Set Pr.00-02 to 0 before changing other parameter settings.
[1] When it is set to 6 , the internal PLC program will be cleared. (includes the related settings of PLC internal CANopen master)When it is set to 7: reset the related settings of CANopen slave.When it is set to 9 or 10, all parameters will be reset to factory settings. If the password is set in Pr.00-08, it needs to input the password set in Pr.00-07 to reset to factory settings.

~ 00-03 Start-up Display Selection

Factory setting: 0

Settings	0: Display the frequency command (F)
	1: Display the actual output frequency (H)
2: Display User define (U)	
	3: Output current (A)

This parameter determines the start-up display page after power is applied to the drive. User defined choice display according to the setting in Pr.00-04.

Settings 0: Display output current (A)
1: Display counter value (c)
2: Display actual output frequency (H.)
3: Display DC-BUS voltage (v)
4: Display output voltage (E)
5: Display output power angle (n)
6: Display output power in kW (P)
8: Display estimate output torque $\%(t=00$: positive torque; -00 negative torque $)$ (t)

10: Display PID feedback in \% (b)

11: Display AVI1 in \% (1.), $0 \sim 10 \mathrm{~V} / 4-20 \mathrm{~mA} / 0-20 \mathrm{~mA}$ corresponds to $0 \sim 100 \%$ (Refer to Note 2)
12: Display ACI in $\%(2),. \quad 4 \sim 20 \mathrm{~mA} / 0 \sim 10 \mathrm{~V} / 0-20 \mathrm{~mA}$ corresponds to $0 \sim 100 \%$ (Refer to Note 2)

13: Display AVI2 in \% (3.), $0 \mathrm{~V} \sim 10 \mathrm{~V}$ corresponds to $-100 \sim 100 \%$ (Refer to Note 2)

14: Display the temperature of IGBT in ${ }^{\circ} \mathbf{C}$ (i.)
15: Display the temperature of capacitance in ${ }^{\circ} \mathbf{C}$ (c.)
16: The status of digital input (ON/OFF) refer to Pr.02-20 (i) (Refer to Note3)
17: Display digital output status ON/OFF (Pr.02-15) (o) (refer to NOTE 4)
18: Display the multi-step speed that is executing (S)
19: The corresponding CPU pin status of digital input (d) (refer to NOTE 3)
20: The corresponding CPU pin status of digital output (0.) (refer to NOTE 4)
25: Overload counting ($0.00 \sim 100.00 \%$) (h.)
26: GFF Ground Fault (Unit :\%)(G.)
27:DC Bus voltage ripple (Unit: Vdc)(r.)
28: Display PLC register D1043 data (C) display in hexadecimal
30 : Display output of user defined (U)
31 : H page x 00-05 Display user Gain(K)
34: Operation speed of fan(\%) (F.)
37: Reserved
38: Display drive status (6.)
41: KWH display, unit KWH(J)
42: PID Reference, unit \% (L.)
43: PID offset, unit (\%) (o)
44: PID Output frequency, unit: Hz (b.)

Note 1

It can display negative values when setting analog input bias (Pr.03-03~03-10).
Example: assume that AVI1 input voltage is 0V, Pr.03-03 is 10.0% and $\operatorname{Pr} .03-07$ is 4 (Serve bias as the center).

Note 2

Example: If REV, MI1 and MI6 are ON, the following table shows the status of the terminals.
0 means OFF, 1 means ON

Terminal	MI15	MI14	MI13	MI12	MI11	MI10	MI8	MI7	MI6	MI5	MI4	MI3	MI2	MI1	REV	FWD
Status	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0

MI10~MI15 are the terminals for extension cards (Pr.02-26~02-31).
If REV, MI1 and MI6 are ON, the value is 0000000010000110 in binary and 0086h in HEX. When Pr.00-04 is set to " 16 " or " 19 ", it will display " 0086 h " with LED U is ON on the keypad KPC-CE01. The setting 16 is the status of digital input by Pr.02-11 setting and the setting 19 is the corresponding CPU pin status of digital input. User can set to 16 to monitor digital input status and then set to 19 to check if the wire is normal.

Note 3

Assume that RY1: Pr.02-13 is set to 9 (Drive ready). After applying the power to the AC motor drive, if there is no other abnormal status, the contact will be OFF. The display status will be shown as follows.
0 means OFF, 1 means ON

Meanwhile, if Pr.00-04 is set to 17 or 20 , it will display in hexadecimal " 0001 h " with LED U is ON on the keypad. The setting 17 is the status of digital output by Pr.02-18 setting and the setting 20 is the corresponding CPU pin status of digital output. User can set 17 to monitor the digital output status and then set to 20 to check if the wire is normal.

00-05 Coefficient Gain in Actual Output Frequency

Factory Setting: 1.00
Settings $\quad 0 \sim 160.00$
(1) This parameter is to set coefficient gain in actual output frequency. Set Pr.00-04=31 to display the calculation result on the screen (calculation $=$ output frequency $* \operatorname{Pr} .00-05$).

00-06 Software version

Factory Setting: \#.\#

Settings Read Only

* 00-07 Input Parameter Protection Password

Factory Setting: 0
Settings 0~65535
Display $\quad 0 \sim 4$ (\# of times of password attempts)
[1] This parameter allows user to enter their password (which is pre-set in Pr.00-08) to unlock the parameter protection and to make changes to the parameter.After you set up this parameter, make sure that you note its value for any future use.The purpose of hAVI1ng Pr.00-07 and Pr.00-08 is to prevent the personal misoperation.If you forget the password, clear the setting by input 9999 and press ENTER key, then input 9999 again and press Enter within 10 seconds. After decoding, all the settings will return to factory setting.When setting up a password all parameters read are 0, except parameter 00-08.

00-08 Set up a Parameter Protection Password

Factory Setting: 0
Settings 0~65535
Display 0: No password protection / password is entered correctly (Pr00-07)
1: Password has been set
10. This parameter is to set up a password to protect parameter settings from unauthorized modifications. For the very first set up, enter directly a password of your choice. Once you finish entering that password, the setting of the parameter $00-08$ will be 1 . Then the password protection is activated. If you want to modify any parameter, go to parameter 00-07, enter the password that you set up here. Then you can modify the parameter.
10. Once you decode the parameter protection number at Parameter 00-07 and the set the parameter to 0 , then the password protection will be canceled. The will not be password protection when you re-start CP2000.

1 Password setting is permanently effective. If you need to modify any parameter, decode the parameter protection at Parameter 00-07.
[a] How to re-start the parameter protection after the password is decode?
Method01: Go to parameter 00-08, enter once a new password.
Method02: Reboot CP2000 to restore the setting
Method03: Input any value into Pr.00-07 (Do not enter the password).

00-09~
00-10 Reserved

00-11 Velocity Control Mode
Factory Setting: 0
Settings $0: \mathrm{V} / \mathrm{F}$ (V/F control)
2 : SVC (Sensorless Vector Control)
[1] This parameter determines the control method of the AC motor drive:
0 : V/F control: user can design proportion of V/f as required and can control multiple motors simultaneously.
2: Sensorless vector control: get the optimal control by the auto-tuning of motor parameters.
[0] When setting Pr.00-11 to 0 , the V / F control diagram is shown as follows.
Fcmd
Pr00-20

[1] When setting Pr.00-11 to 2, the sensorless vector control diagram is shown as follows.

~ $00-16$ Loading mode selection
Factory Setting: 0
$\begin{array}{ll}\text { Settings } & 0: \text { Light duty } \\ & 1: \text { Normal duty }\end{array}$

Light duty 230 V series $\& 460 \mathrm{~V}$ series: When the output current is 110% of the rated output current, the endurance time is 60 seconds. When the output current is 130% of the rated output current, the endurance time is 3 seconds. Refer to Pr.00-17 for the setting of carrier frequency. Refer to chapter specifications or $\operatorname{Pr} .00-01$ for the rated current.Normal duty 230 V series \& 460V series: When the output current is 120% of the rated output current, the endurance time is 60 seconds. When the output current is 160% of the rated output current, the endurance time is 3 seconds. . Refer to Pr.00-17 for the setting of carrier frequency. Refer to chapter specifications or Pr.00-01 for the rated current.

00-17 Carrier Frequency

Factory Setting: As shown in table below
Settings $\quad 2 \sim 15 \mathrm{kHz}$
This parameter determinates the PWM carrier frequency of the AC motor drive.

230 V series			$1-20 \mathrm{HP}[0.75-15 \mathrm{~kW}]$
Models	$2 \sim-60 \mathrm{HP}[18.5-45 \mathrm{~kW}]$	$75-125 \mathrm{HP}[55-90 \mathrm{~kW}]$	
Settings	$2 \sim 10 \mathrm{kHz}$	$2 \sim 9 \mathrm{kHz}$	
Light Duty Factory Setting	8 kHz	6 kHz	4 kHz
Normal Duty Factory Setting	8 kHz	6 kHz	4 kHz

460 V series	$1-25 \mathrm{HP}$ $[0.75-18.5 \mathrm{~kW}]$	$30-100 \mathrm{HP}[22-75 \mathrm{~kW}]$	$125-536 \mathrm{HP}[90-400 \mathrm{~kW}]$
Models	$2 \sim 15 \mathrm{kHz}$	$2 \sim 10 \mathrm{kHz}$	$2 \sim 9 \mathrm{kHz}$
Settings	8 kHz	6 kHz	4 kHz
Light Duty Factory Setting	6 kHz	4 kHz	
Normal Duty Factory Setting	8 kHz		

Carrier Frequency	Acoustic Noise	Electromagnetic Noise or Leakage Current	Heat Dissipation	Current Wave
1 kHz	Significant	Minimal 8 kHz		Minimal

(1) From the table, we see that the PWM carrier frequency has a significant influence on the electromagnetic noise, AC motor drive heat dissipation, and motor acoustic noise. Therefore, if the surrounding noise is greater than the motor noise, lower the carrier frequency is good to reduce the temperature rise. Although it is quiet operation in the higher carrier frequency, the entire wiring and interference resistance should be considerate.When the carrier frequency is higher than the factory setting, it needs to protect by decreasing the carrier frequency. See Pr.06-55 for the related setting and details.
00-18 Reserved

00-19 PLC Command Mask

Settings Bit 0: Control command controls by PLC
Bit 1: Frequency command controls by PLC
Bit 2: Reserved
Bit 3: Reserved

Factory Setting: 0
Settings 0: Digital keypad
1: RS-485 serial communication
2: External analog input (Pr.03-00)
3: External UP/DOWN terminal
6: CANopen communication card
8: Communication card (no CANopen card)To set the source of the master frequency in AUTO mode.Pr.00-20 and 00-21 are for the settings of frequency source and operation source in AUTO mode. Pr.00-30 and 00-31 are for the settings of frequency source and operation source in HAND mode. The AUTO/HAND mode can be switched by the keypad KPC-CC01 or multi-function input terminal (MI).The factory setting of frequency source or operation source is for AUTO mode. It will return to AUTO mode whenever power on again after power off. If there is multi-function input terminal used to switch AUTO/HAND mode. The highest priority is the multi-function input terminal. When the external terminal is OFF, the drive won't receive any operation signal and can't execute JOG.

* 00-21 Source of the Operation Command (AUTO)

Factory Setting: 0

Settings	0: Digital keypad
	1: External terminals. Keypad STOP disabled.
	2: RS-485 serial communication. Keypad STOP disabled.
	3: CANopen card
	5: Communication card (not includes CANopen card)

~ $00-22$ Stop Mode
Factory Setting: 0
Settings 0: Ramp to stop
1: Coast to stop
The parameter determines how the motor is stopped when the AC motor drive receives a valid stop command.

1. Ramp to stop: the AC motor drive decelerates from the setting of deceleration time to 0 or minimum output frequency (Pr. 01-09) and then stop (by Pr.01-07).
2. Coast to stop: the AC motor drive stops the output instantly upon a STOP command and the motor free runs until it comes to a complete standstill.

V It is recommended to use "ramp to stop" for safety of personnel or to prevent material from being wasted in applications where the motor has to stop after the drive is stopped. The deceleration time has to be set accordingly.

च If the motor free running is allowed or the load inertia is large, it is recommended to select "coast to stop". For example, blowers, punching machines and pumps
~ $00-23$ Motor Operating Direction Control
Factory Setting: 0

Settings	$0:$ Enable forward/ reverse
	1: Disable reverse
	2: Disable forward

[1] This parameter enables the AC motor drives to run in the forward/reverse Direction. It may be used to prevent a motor from running in a direction that would consequently injure the user or damage the equipment.

00-24 Memory of Communication Frequency Command

Factory Setting: Read Only
Settings Read OnlyIf keypad is the source of frequency command, when Lv or Fault occurs the present frequency command will be saved in this parameter.

Settings	Bit 0~3: user defined decimal place 0000B: no decimal place 0001B: one decimal place 0010B: two decimal place 0011B: three decimal place
	Bit 4~15: user defined unit 000xH: Hz
	001 xH : rpm
	002xH: \%
	003xH: kg
	004xH: m/s
	005xH: kW
	006xH: HP
	007xH: ppm
	008xH: 1/m
	009xH: kg/s
	00AxH: kg/m
	$00 \mathrm{BxH}: \mathrm{kg} / \mathrm{h}$
	$00 \mathrm{CxH}: \mathrm{lb} / \mathrm{s}$
	$00 \mathrm{DxH}: \mathrm{lb} / \mathrm{m}$
	00 ExH : $1 \mathrm{l} / \mathrm{h}$
	00 FxH : ft/s
	010xH: ft/m
	011xH: m
	012xH: ft
	013xH: degC
	014xH: degF
	015xH: mbar
	016xH: bar
	017xH: Pa
	018xH: kPa
	019xH: mWG
	01 AxH : inWG
	01BxH: ftWG
	01CxH: psi
	01DxH: atm
	01ExH: L/s
	01FxH: L/m

020xH: L/h
021xH:m3/s
022xH: m3/h
023xH: GPM
024xH:CFM

Bit 0~3: F \& H page unit and Pr.00-26 decimal display is supported up to 3 decimal places.
(1) Bit 4~15: F \& H page unit and Pr.00-26 unit display is supported up to several types of unit display

00-26 Max. User Defined Value
Factory Setting: 0
Settings 0: Disable
0000B: 0~65535 (No decimal place in Pr.00-25 setting)
0001B: 0.0~6553.5 (One decimal place in Pr.00-25 setting)
0010B: 0.0~655.35(Two decimal place in Pr.00-25 setting)
0011B: 0.0~65.536 (Three decimal place in Pr.00-25 setting)
1 User defined is enabled when Pr.00-26 is not 0 . The setting of Pr.00-26 corresponds to Pr. 01.00 (Max. output frequency of the drive).

Example: User define: 100.0%, Pr. $01.00=60.00 \mathrm{~Hz}$
Pr. 00.25 setting is $0021 \mathrm{~h} ; \operatorname{Pr} .0026$ setting is 100.0%
NOTE In order to display as the setting in Pr.0025, please set up Pr. 00.25 first and ensure Pr. 00.26 is not set to 0 .

00-27 User Defined Value

Factory Setting: Read Only
Settings Read OnlyPr.00-27 will show user defined value when Pr. $00-26$ is not set to 0 .
N 00-28 Switching from Auto mode to Hand mode
Factory Setting: 0
Settings $\quad 0 \sim 65535$
Bit0 : Sleep Function Control Bit
0 : Cancel sleep function
1: Sleep function and Auto mode are the same
Bit1 : Unit of the Control Bit
0: Unit of the Control Bit
1: Same unit as the Auto mode
Bit2 : PID Control Bit
0: Cancel PID control
1: PID control and Auto mode are the same.

00-29 Local/Remote Selection

Factory Setting: 0
Settings $0 \sim 4$
0: Standard HOA functions.

1: When switching between Local/Remote: If the drive is running, the drive will stop. If the drive is already stopped, it still remains stopped.

2: The drive still follows the setting at Remote while switching to Local. For example, if the setting at Remote is "running", the drive keeps on "running" even after the drive is switched from Remote to Local. Unless a "stop" command is given, then the drive will be stopped under LOCAL mode.

3: The drive still follows the setting at Local while switching to Remote. For example, if the setting at L is "stopping', the drive keeps "stopping" even after the drive is at Remote mode. Unless a "running" command is given, then the drive will start to run under Remote mode.

4: The drive remembers the both settings at Local and Remote.
When switch to Remote, the drive follows right away the setting at Remote. When switch to Local, the drive follows instantly the setting at Local.
[1] While using the external terminal FWD/REV as the operation command. The source of the operation command needs to be enabled.HOA definition is the priority. When using HOA definition, , set Local/Remote selection at the multi function input but don't use MI. When using Local/Remote definition, set Hand Switch \& Auto Switch at multi-function inputWhen HOA and Local/Remote selection are NOT set to 0 , the keypad shows Loc \& Rem replaces HAND/OFF/AUTO. Then the AUTO key becomes REMOTE and the HAND key becomes LOCAL.When the multi-function input terminal sets HAND/AUTO selection, the keypad displays HAND/.OFF.AUTO.

~ 00-30 Source of the Master Frequency Command (HAND)

Factory Setting: 0

Settings	$0:$ Digital keypad
	1: RS-485 serial communication
	2: External analog input (Pr.03-00)
	3: External UP/DOWN terminal
	6: CANopen communication card
	8: Communication card (no CANopen card)

To set the source of the master frequency in HAND mode.

* 00-31 Source of the Operation Command (HAND)

Factory Setting: 0
Settings 0: Digital keypad
1: External terminals. Keypad STOP disabled.
2: RS-485 serial communication. Keypad STOP disabled.
3: CANopen communication card
5: Communication card (not including CANopen card)
Ia To set the source of the operation frequency in HAND mode.
1 Pr.00-20 and 00-21 are for the settings of frequency source and operation source in AUTO mode. Pr.00-30 and 00-31 are for the settings of frequency source and operation source in HAND mode. The
AUTO/HAND mode can be switched by the keypad KPC-CC01 or multi-function input terminal (MI).
1 The factory setting of frequency source or operation source is for AUTO mode. It will return to AUTO mode whenever power on again after power off. If there is multi-function input terminal used to switch AUTO/HAND mode. The highest priority is the multi-function input terminal. When the external terminal is OFF, the drive won't receive any operation signal and can't execute JOG.
~ 00-32 Enable Digital Keypad STOP Function
Factory Setting: 0
Settings 0: STOP key disable
1: STOP key enable
00-33~
00-47
Reserved

00-48 Display Filter Time (Current)
Factory Setting: 0.100
Settings 0.001~65.535
Set this parameter to minimize the current fluctuation displayed by digital keypad.
$00-49$ Display Filter Time on the Keypad
Factory Setting: 0.100
Settings 0.001~65.535
[1] Set this parameter to minimize the display value fluctuation displayed by digital keypad.
$00-50$ Software Version (date)
Factory Setting: Read Only
Settings 0~65535This parameter displays the drive's software version by date.

01 Basic Parameter

N The parameter can be set during operation.

01-00 Maximum Output Frequency

Factory Setting: 60.00/50.00
Settings $\quad 50.00 \sim 600.00 \mathrm{~Hz}$
This parameter determines the AC motor drive's Maximum Output Frequency. All the AC motor drive frequency command sources (analog inputs 0 to $+10 \mathrm{~V}, 4$ to $20 \mathrm{~mA}, 0$ to 20 mA and $\pm 10 \mathrm{~V}$) are scaled to correspond to the output frequency range. For models above $55 \mathrm{~kW}(75 \mathrm{HP})$, the setting range is $0.00 \sim 400.00 \mathrm{~Hz}$.

01-01 Motor1: Max Output Frequency(Hz) (Base Frequency/Motor Rated Frequency)

Factory Setting: 60.00/50.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$

01-02 Motor1: Max Output Voltage (V)
01-03 Mid-point Frequency 1 of Motor 1
Factory Setting:
220.00/400.00

Factory Setting: 3.0

Settings	230 V series $0.0 \sim 255.0 \mathrm{~V}$
	460 V series $0.0 \sim 510.0 \mathrm{~V}$
Settings	$0.00 \sim 600.00 \mathrm{~Hz}$

01-04 Mid-point Voltage 1 of Motor 1
Factory Setting: 11.0/22.0
Settings 230 V series $0.0 \sim 240.0 \mathrm{~V}$
460 V series $0.0 \sim 480.0 \mathrm{~V}$

01-05 Mid-point Frequency 2 of Motor 1

Factory Setting: 0.50
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$
~ 01-06 Mid-point Voltage 2 of Motor 1
Factory Setting: 4.0/8.0
Settings 230 V series $0.0 \sim 240.0 \mathrm{~V}$
460 V series $0.0 \sim 480.0 \mathrm{~V}$

01-07 Min. Output Frequency of Motor 1
 Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$
 Factory Setting: 0.00

~ 01-08 Min. Output Voltage of Motor 1
Factory Setting: 0.0/0.0
Settings 230 V series $0.0 \sim 240.0 \mathrm{~V}$
460 V series $0.0 \sim 480.0 \mathrm{~V}$

01-09 Start-Up Frequency

Factory Setting: 0.50
Settings $\quad 0.0 \sim 600.00 \mathrm{~Hz}$
[1] When start frequency is higher than the min. out put frequency, drives' output will be from start frequency to the setting frequency. Please refer to the following diagram for details.
(1)] Fcmd = frequency command,

Fstart $=$ start frequency (Pr.01-09),
fstart $=$ actual start frequency of drive,
Fmin $=4$ th output frequency setting (Pr.01-07/Pr.01-41),
Flow $=$ output frequency lower limit (Pr.01-11)

N 01-11 Output Frequency Lower Limit

Factory Setting: 0.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$
(1) The upper/lower output frequency setting is used to limit the actual output frequency. If the frequency setting is higher than the upper limit, it will run with the upper limit frequency. If output frequency is lower than the output frequency lower limit and frequency setting is higher than min. frequency, it will run with lower limit frequency. The upper limit frequency should be set to be higher than the lower limit frequency.

1 Pr.01-10 setting must be $\geq \operatorname{Pr} .01-11$ setting. Pr.01-00 setting is regarded as 100.0%.
1 This setting will limit the max. Output frequency of drive. If frequency setting is higher than Pr.01-10, the output frequency will be limited by Pr.01-10 setting.
$1 \mathbb{1}$ When the drive starts the function of slip compensation (Pr.07-27) or PID feedback control, drive output frequency may exceed frequency command but still be limited by this setting.
(1) Related parameters: Pr.01-00 Max. Operation Frequency and Pr.01-11 Output Frequency Lower Limit

V/f curve

1 This setting will limit the min. output frequency of drive. When drive frequency command or feedback control frequency is lower than this setting, drive output frequency will limit by the lower limit of frequency.
[1] When the drive starts, it will operate from min. output frequency (Pr.01-05) and accelerate to the setting frequency. It won't limit by this parameter setting.

11 The setting of output frequency upper/lower limit is used to prevent the personal misoperation, the overheat due to too low operation frequency and the damage due to too high speed.

If the output frequency upper limit setting is 50 Hz and frequency setting is 60 Hz , max. output frequency will be 50 Hz .

If the output frequency lower limit setting is 10 Hz and min. operation frequency setting (Pr.01-05) is 1.5 Hz , it will operate by 10 Hz when the frequency command is greater than Pr.01-05 and less than 10 Hz . If the frequency command is less than Pr.01-05, the drive will be in ready status and no output.If the frequency output upper limit is 60 Hz and frequency setting is also 60 Hz , it won't exceed 60 Hz even after slip compensation. If the output frequency needs to exceed 60 Hz , it can increase output frequency upper limit or max. operation frequency.
${ }^{\sim}$ 01-12 Accel. Time 1
~ 01 - 13 Decel. Time 1
N 01-14 Aceel. Time 2
~ 01 - 15 Decel. Time 2
N 01-16 Accel. Time 3
~ 01-17 Decel. Time 3
N 01-18 Accel. Time 4

* 01-19 Decel. Time 4
* 01-20 JOG Acceleration Time
* 01-21 JOG Deceleration Time

Factory Setting: 10.00/10.0

Settings Parameters $01-45=0: 0.00 \sim 600.00$ seconds
 Parameters $01-45=1: 0.0 \sim 6000.0$ seconds

The Acceleration Time is to determine the length of time required for the AC motor drive to ramp from 0.0 Hz to Maximum Output Frequency (Pr.01-00). The Deceleration Time is to determine the length of time required for an AC motor drive to decrease from Maximum Output Frequency (Pr.01-00) to 0.00 Hz .The Acceleration/Deceleration Time is invalid when setting Pr.01-44 Optimal Acceleration/Deceleration Setting.[1] The Acceleration/Deceleration Time 1, 2, 3, 4 are selected according to the Multi-function Input Terminals settings. The factory settings are Accel./Decel. Time 1.When enabling torque limits and stalls prevention function, actual accel./decel. time will be longer than the action time set up above.
[1] Please note that it may trigger the protection function (Pr.06-03 Over-current Stall Prevention during Acceleration or Pr.06-01 Over-voltage Stall Prevention) when the setting of accel./decel. time is too short.

LD] Please note that it may cause motor damage or drive protection enabled due to over current during acceleration when the setting of acceleration time is too short.
(1) Please note that it may cause motor damage or drive protection enabled due to over current during deceleration or over-voltage when the setting of deceleration time is too short.
[D] It can use suitable brake resistor (see Chapter 06 Accessories) to decelerate in a short time and prevent over-voltage.
$\mathbb{4}$ When enabling Pr.01-24~Pr.01-27, the actual accel./decel. time will be longer than the setting.

* 01-22 JOG Frequency (JOG)

Factory Setting: 6.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$
[1] Both external terminal JOG and key "F1" on the keypad KPC-CC01 can be used. When the jog command is ON, the AC motor drive will accelerate from 0 Hz to jog frequency (Pr.01-22). When the jog command is OFF, the AC motor drive will decelerate from Jog Frequency to zero. The Jog Accel./Decel. time (Pr.01-20, Pr.01-21) is the time that accelerates from 0.0Hz to Pr.01-22 JOG Frequency.
[1] The JOG command can't be executed when the AC motor drive is running. In the same way, when the JOG command is executing, other operation commands are invalid except forward/reverse commands and STOP key on the digital keypad.The optional keypad KPC-CE01 doesn't support JOG function.

01-23 Frequency of 1st Acceleration / Deceleration \&
 Frequency of $4^{\text {th }}$ Acceleration / Deceleration.

Factory Setting: 0.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$The transition from acceleration/deceleration time 1 to acceleration/deceleration time 4, may also be enabled by the external terminals. The external terminal has priority over Pr. 01-23.

1st/4th Acceleration/Deceleration Switching

* 01-24 S-curve for Acceleration Departure Time 1
* 01-25 S-curve for Acceleration Arrival Time 2
* 01-26 S-curve for Deceleration Departure Time 1
* 01-27 S-curve for Deceleration Arrival Time 2

Factory Setting: 0.20/0.2
Settings Parameter $01-45=0: 0.00 \sim 25.00$ seconds Parameter $01-45=1: 0.00 \sim 250.0$ secondsIt is used to give the smoothest transition between speed changes. The accel./decel. curve can adjust the S-curve of the accel./decel. When it is enabled, the drive will have different accel./decel. curve by the accel./decel. time.
(1) The S-curve function is disabled when accel./decel. time is set to 0 .When Pr.01-12, 01-14, 01-16, 01-18 \geq Pr.01-24 and Pr.01-25, the Actual Accel. Time $=\operatorname{Pr} .01-12,01-14,01-16,01-18+(\operatorname{Pr} .01-24+\operatorname{Pr} .01-25) / 2$

When Pr.01-13, 01-15, 01-17, 01-19 \geq Pr.01-26 and Pr.01-27, the Actual Decel. Time $=\operatorname{Pr} .01-13,01-15,01-17,01-19+(\operatorname{Pr} .01-26+\operatorname{Pr} .01-27) / 2$

01-28 Upper limit of Frequency 1 setting not allowed
 01 - 29 Lower limit of Frequency 1 setting not allowed
 01 - 30 Upper limit of Frequency 2 setting not allowed
 01-31 Lower limit of Frequency 2 setting not allowed
 01-32 Upper limit of Frequency 3 setting not allowed
 01 - 33 Lower limit of Frequency 3 setting not allowed

Factory Setting: 0.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$

These parameters are used to set the skip frequency of the AC drive. But the frequency output is continuous. There is no limit for the setting of these six parameters and can be used as required.

1 These parameters are used to set the skip frequency of the AC drive. But the frequency output is continuous. The limit of these six parameters is $01-28 \geq 01-29 \geq 01-30 \geq 01-31 \geq 01-32 \geq 01-33$. This function will be invalid when setting to 0.0 .

凹】 The skip frequencies are useful when a motor has vibration at a specific frequency bandwidth. By skipping this frequency, the vibration will be avoided. It offers 3 zones for use.The setting of frequency command (F) can be set within the range of skip frequencies. At this moment, the output frequency (H) will be limited by these settings.When accelerating/decelerating, the output frequency will still pass the range of skip frequencies.

01-34 Zero-speed Mode

Factory Setting: 0
Settings 0: Output waiting
1: Zero-speed operation
2: Output at Minimum Frequency (the 4th output

When We frequency is less than Fmin (Pr.01-07 or Pr.01-41), it will operate by this parameter.
1 When it is set to 0 , the AC motor drive will be in waiting mode without voltage output from terminals U/V/W.When it is set to 1, it will execute DC brake by Vmin(Pr.01-08 and Pr.01-42) in V/F and SVC modes.When it is set to 2, the AC motor drive will run by Fmin (Pr.01-07, Pr.01-41) and Vmin (Pr.01-08, Pr.01-42) in V/F and SVC modes.When it is set to 2 and if the setting of Pr01-11(output frequency lower limit) is bigger than Fmin, then the motor drive will run in accordance with the setting of Pr01-11 in VF and SVC mode.In V/F and SVC modes

01 - 35 Motor 2: Max Output Frequency (Hz) (Base Frequency/Motor Rated Frequency)

Factory Setting: 60.00/50.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$

01-36 Motor 2: Max Output Voltage (V) (Base Voltage/Motor Rated Voltage)

Factory Setting: 200.0/400.0
Settings 230 V series $0.0 \sim 255.0 \mathrm{~V}$ 460 V series $0.0 \sim 510.0 \mathrm{~V}$

1 The setting of this parameter follows that rated output voltage on the nameplate. If the motor uses 220 V , then the setting will be 220.0 V . If the motor uses 200 V , then the setting will be 200.0 V .There are several kinds of motor available in the market and the power systems differ from country to country. The most feasible and simplest way to solve this issue is to install a variable frequency drive such as CP2000. Then problems such as different voltage and frequency will be easily solved to bring a motor into full play.

01-37 Motor 2: Middle Output Frequency 1
Factory Setting: 3.00
Settings $0.00 \sim 600.00 \mathrm{~Hz}$
N 01-38 Motor 2: Middle Output Voltage 1
Factory Setting: 11.0/22.0
Settings 230V series $0.0 \sim 240.0 \mathrm{~V}$
460 V series $0.0 \sim 480.0 \mathrm{~V}$

01-39 Motor 2: Middle Output Frequency 2
Factory Setting: 0.50
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$
^ 01-40 Motor 2: Middle Output Voltage 2
Factory Setting: 4.0/8.0
Settings 230V series $0.0 \sim 240.0 \mathrm{~V}$
460 V series $0.0 \sim 480.0 \mathrm{~V}$

01-41 Motor 2: Minimum Output Frequency

Factory Setting: 0.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$
N 01-42 Motor 2: Minimum Output Voltage
Factory Setting: 0.0/0.0
$\begin{array}{ll}\text { Settings } & 230 \mathrm{~V} \text { series } 0.0 \sim 240.0 \mathrm{~V} \\ & 460 \mathrm{~V} \text { series } 0.0 \sim 480.0 \mathrm{~V}\end{array}$
[1] The setting of V/F curve usually follows the load characteristics of a motor. If the workload exceed a motor's capacity, pay attentions to its heat dissipation, dynamic balance and bearing lubrication.
1 If the setting of the voltage at low frequency is too high, it might cause a motor to be broken down, be overheated, have stall prevention and/or have over current protection. So please be very careful when setting up parameter to avoid any damages on the motor and the drive.Parameters 01-35 ~ 01-42 are to set up V/F curve of Motor 2. When multi-function input terminals $02-02 \sim 02-08$ and $02-26 \sim 02-31$ (expansion card) are set to 14 and enabled, then the drive will operate by following V/F curve of Motor 2.The V/F curve of Motor 1 is shown as below. The V/F Curve of Motor 2 will be the like.

VIF Curve

Common setting of V/F curve
(1) General purpose

Motor spec. 60 Hz

(2) Fan \& Hydraulic Machinery

Motor spec. 60 Hz

Motor spec. 50Hz

Motor spec. 50 Hz

	Pr.	Setting
	01-00	50.0
	01-01	50.0
	01-02	220.0
	$\begin{aligned} & 01-03 \\ & 01-05 \end{aligned}$	25.0
	01-04	
	01-06	50.0
	01-07	1.30
$1.3 \quad 25 \quad 50.0$	01-08	10.0

(3) High Starting Torque

Motor spec. 60 Hz

Motor spec. 50 Hz

01-43 V/F Curve Selection

Factory Setting: 0
Settings $\quad 0: \mathrm{V} / \mathrm{F}$ curve determined by group 01
: 1.5 power curve
2: Square curve
[1] When setting to 0 , refer to Pr.01-01~01-08 for motor $1 \mathrm{~V} / \mathrm{f}$ curve. For motor 2, refer to Pr.01-35~01-42.
[D] When setting to 1 or 2 , the $2^{\text {nd }}$ and the $3^{\text {rd }}$ voltage frequency setting are invalid.
LD] If a motor load is a variable torque load (the torque is in direct proportion to the speed, such as the load of a fan or a pump), it will decrease input voltage to reduce flux loss and iron loss of the motor at low speed with low load torque to raise the entire efficiency.
(1) When setting the higher power V/F curve, low frequency torque will be even lower so it is not suitable for fast acceleration/deceleration. It is recommended NOT to apply this parameter for any fast acceleration/deceleration.

~ 01-44 Optimal Acceleration/Deceleration Setting

Factory Setting: 0
Settings 0: Linear accel. /decel.
1: Auto accel., Linear decel.
2: Linear accel., Auto decel.
3: Auto accel. / decel.
4: Linear, stall prevention by auto accel./decel. (limit by
[1] This parameter helps to decrease efficiently the mechanical vibration when a motor starts/stops a load. It auto-detects the torque size of a load, then it will accelerate to reach the frequency of your setting within the shortest time and the smoothest start-up current. It can also auto-detect the re-generated voltage of a load, and then it will decelerate to stop the motor within the shortest time and in a smoothest way.
(1) Setting 0 Linear accel./decel.: it will accelerate/decelerate according to the setting of Pr.01-12~01-19.
[ad Setting to Auto accel./decel.: it can reduce the mechanical vibration and prevent the complicated auto-tuning processes. It won't stall during acceleration so a brake resistor is not required. In addition, it can improve the operation efficiency and save energy.Setting 3 Auto accel./decel. (auto calculation of the accel./decel. time by actual load): this setting helps to decrease efficiently the mechanical vibration when the drive starts/stops a load. It auto-detects the torque size of a load, then it will accelerate to reach the frequency of your setting within the shortest time and the smoothest start-up current. It can also auto-detect the re-generated voltage of a load, and then it will decelerate to stop the drive within the shortest time and in a smoothest way.
©ad Setting 4 Stall prevention by auto accel./decel. (limited by 01-12 to 01-21): if the acceleration/deceleration is in a reasonable range, it will accelerate/decelerate in accordance with the setting of Pr.01-12~01-19. If the accel./decel. time is too short, the actual accel./decel. time will be greater than the setting of accel./decel. time.

(1) When Pr.01-44 is set to 0
(2) When Pr.01-44 is set to 3 .

01-45 Time Unit for Acceleration/Deceleration and S Curve

Factory Setting: 0
Settings 0 : Unit 0.01 second
1: Unit 0.1 second

01-46 CANopen Quick Stop Time

Factory Setting: 1.00

Settings	Parameter 01-45=0: 0.00~600.00 seconds
	Parameter 01-45=1: $0.0 \sim 6000.0$ seconds

\square It is to set up the length of time required when a drive decelerates from its max. operation frequency (Pr.01-00) to 0.00 Hz in CANopen control mode. .

02 Digital Input/Output Parameter

\mathcal{N} The parameter can be set during operation.

02 - 00 2-wire/3-wire Operation Control

Factory Setting: 0

Settings	$0: 2$ wire mode 1
	$1: 2$ wire mode 2
	$2: 3$ wire mode

This parameter is to set the operation control method. There are three different control modes.

02-00	Control Circuits of the External Terminal	
When the setting is 0 Two-wire mode 1 FWD/STOP REV/STOP	$\begin{aligned} & \text { FWD/STOP } \\ & \text { REV/STOP } \end{aligned}$	$\begin{array}{r} \text { FWD:("OPEN":STOP) } \\ \text { ("CLOSE":FWD) } \\ \text { REV:("OPEN": STOP) } \\ \text { DCM } \begin{array}{r} \text { ("CLOSE": REV) } \\ \text { VFD-CP } \end{array} \end{array}$
When setting is 1 Two-wire mode 2 RUN/STOP REV/FWD	RUN/STOP FWD/REV- \qquad - 0	```FWD:("OPEN": STOP) ("CLOSE":RUN) REV: ("OPEN": FWD) DCM ("CLOSE": REV) VFD-CP```
3: Three-wire operation control		FWD "CLOSE":RUN MI1 "OPEN":STOP REV/FWD "OPEN": FWD "CLOSE": REV DCM VFD-CP

02-01 Multi-function Input Command 1 (MI1) (MI1) When Pr02-00 is set at "3:
Three-wire operation control, the terminal M1 becomes the STOP contact Factory Setting: 1
02-02 Multi-function Input Command 2 (MI2)
Factory Setting: 2
02-03 Multi-function Input Command 3 (MI3)
Factory Setting: 3
02-04 Multi-function Input Command 4 (MI4)
Factory Setting: 4
02-05 Multi-function Input Command 5 (MI5)
02-06 Multi-function Input Command 6 (MI6)
02-07 Multi-function Input Command 7 (MI7)
02-08 Multi-function Input Command 8 (MI8)
02-26 Input terminal of I/O extension card (MI10)

02-27 Input terminal of I/O extension card (MI11)
 02-28 Input terminal of I/O extension card (MI12)
 02-29 Input terminal of I/O extension card (MI13)
 02-30 Input terminal of I/O extension card (MI14)
 02-31 Input terminal of I/O extension card (MI15)

Factory Setting: 0
Settings
0 : No function
1: multi-step speed command 1
2: multi-step speed command 2
3 : multi-step speed command 3
4: multi-step speed command 4
5: Reset
6: JOG command (By KPC-CC01 or external control)
7: acceleration/deceleration speed not allow
8: the $1^{\text {st }}, 2^{\text {nd }}$ acceleration/deceleration time selection
9: the $3^{\text {rd }}, 4^{\text {th }}$ acceleration/deceleration time selection
10: EF Input (Pr.07-20)
11 : B.B input from external (Base Block)
12: Output stop
14: switch between motor 1 and motor 2
15: operation speed command from AVI1
16: operation speed command from ACI
17: operation speed command from AVI2
18: Emergency stop (Pr.07-20)
19: Digital up command
20: Digital down command
21: PID function disabled
22: Clear counter
23: Input the counter value (MI6)
24: FWD JOG command
25: REV JOG command

28: Emergency stop (EF1)
29: Signal confirmation for Y-connection
30: Signal confirmation for Δ-connection
38 : Disable write EEPROM function
40: Enforced coast to stop
41 : HAND switch
42 : AUTO switch
44~47: Reserved
49: Drive enabled
51: Selection for PLC mode bit 0
52: Selection for PLC mode bit 1
53: Triggered CANOpen quick stop
54: UVW Magnetic Contactor On/OFF
55: Confirmation signal of the released brake
56: LOC/REM Selection
57: Reserved
58: Enable fire mode (with RUN Command)
59: Enable fire mode (without RUN Command)
60: Disable all the motors

61: Disable Motor\#1
62: Disable Motor\#2
63: Disable Motor\#3
64: Disable Motor\#4
65: Disable Motor \#5
66: Disable Motor\#6
67: Disable Motor\#7
68: Disable Motor\#8This parameter selects the functions for each multi-function terminal.Parameter 02-26 to 02-31 will be physical input terminals after expansion cards are installed. If there is no expansion cards installed, these parameters remain virtual terminals. For example, after installing the multiple function expansion card "EMC-D42A", Parameter 02-26 to 02-29 are defined as corresponding parameters for terminals MI10 to MI13. But Parameters 02-30 to 02-31 are still virtual terminals.
1 When terminals are defined as virtual, you need a digital keypad such as KPC-CC01 or a communication mode to modify status of bit 8~15 (0 means ON, 1 means OFF) at Parameter 02-12.
(1) If the setting of the Parameter 02-00 is "2: 3 wire mode," then the terminal MI 1 becomes a STOP contact . So the function which was set at this terminal is automatically disabled.

Table of Functions

(for Normally Open (N.O.) Contacts, ON means contact is CLOSED; OFF means contact is OPEN)

Settings Functions	Descriptions	
0	No Function	
1	Multi-speed command $\mathbf{1}$	15-speed can be conducted through the digital status of the 4
2	Multi-speed command 2	terminals. It will be 16-speed if the master speed is included.
3	Multi-speed command 3	(Refer to parameter of Group04)

Settings	Functions	Descriptions
12	Output stop	If this contact is ON , output of the drive will be cut off immediately, and the motor will then be free run. Once it is turned to OFF, the drive will accelerate to the setting frequency
13	Cancel the setting of the optimal accel./decel. time	Before using this function, Pr.01-44 should be set to mode 01, 02, 03 or 04 first. When this function is enabled, OFF is for auto mode and ON is for linear accel./decel.
14	Switch between drive settings 1 and 2	When the contact is ON: use parameters of motor 2 . When it is OFF: use parameters of motor 1.
15	Operation speed command form AVI1	When the contact is ON, the source of the frequency has to be from AVI1. SetPr03-00 $=1$. (If the operation speed commands are set to AVI1, ACI and AVI2 at the same time. The priority is AVI1 $>$ ACI $>$ AVI2)
16	ACI Operation speed command form ACI	When the contact is ON, the source of the frequency has to be from ACI. Set $\operatorname{Pr} 03-01=1$. (If the operation speed commands are set to AVI1, ACI and AVI2 at the same time. The priority is AVI1 $>$ ACI $>$ AVI2)
17	Operation speed command form AVI2	When this function is enabled, the source of the frequency has to be from AVI2. Set $\operatorname{Pr} 03-02=1$. (If the operation speed commands are set to AVI1, ACI and AVI2 at the same time. The priority is AVI1 > ACI > AVI2)
18	Emergency Stop (07-20)	When the contact is ON, the drive will ramp to stop by setting of Pr.07-20.
19	Digital Up command	Before using this function, choose a source of frequency $(\operatorname{Pr} 00-20$ or $\operatorname{Pr} 00-30$) to do external up/down input. When the contact is ON ,
20	Digital Down Command	the frequency of the drive will be increased or decreased by one unit (Parameter 02-00). If this function is constantly ON, the frequency will be increased or decreased by setting of Pr.02-09 or Pr.02-10.
21	PID function disabled	When the contact is ON, the PID function is disabled
22	Clear counter	When the contact is ON, it will clear current counter value and

		display "0". Only when this function is disabled, it will keep counting upward.
23	Input the counter value (multi-function input command 6)	The counter value will increase 1 once the contact is ON. It needs to be used with Pr.02-19.

Settings	Functions	Descriptions
24	FWD JOG command	When the contact is ON, the drive will execute forward Jog command. When execute JOG command under torque mode, the drive will automatically switch to speed mode; after JOG command is done, the drive will return to torque mode.
25	REV JOG command	When the contact is ON the drive will execute reverse Jog command. When execute JOG command under torque mode, the drive will automatically switch to speed mode; after JOG command is done, the drive will return to torque mode.
28	Emergency stop (EF1)	When the contact is ON, the drive will execute emergency stop and display EF1 on the keypad. The motor stays in the free run until the error is cleared. (terminal's status is back to normal). Only after pressing RESET" (EF: External Fault), the motor can continue to run.
29	Signal confirmation for Y-connection	When the control mode is V/F and the contact is ON, the drive will operate by following the $1 \mathrm{st} \mathrm{V} / \mathrm{F}$.
30	Signal confirmation for \triangle connection	When the control mode is V / F and contact is ON , the drive will operate by following the $2 \mathrm{nd} \mathrm{V} / \mathrm{F}$.
38	Disable EEPROM write function	When this contact is ON, write to EEPROM is disabled. However, the modified value will be back to the old value after restarting the motor drive.
40	Enforced coast to stop	When this contact is ON during an operation, the drive will free run to stop.
41	HAND switch	■ When multi-function input terminal is switched OFF, it
42	AUTO switch	executes a STOP command. That means when switching to OFF during the operation, the drive will also stop. \square When switching by the keypad KPC-CC01 during an operation, the drive will be switched to the status after stop. ■ When a command is entered via a keypad such as KPC-CC01, the drive will stop for few seconds then switch to the status in accordance with that command. ■ Digital keypad displays the drive's status such as

Factory Setting: 0
Settings $\quad 0:$ UP/DOWN by the accel./decal. Time
1 : UP/DOWN constant speed (by parameter 02-10)

N 02-10 $\begin{aligned} & \text { The Acceleration/Deceleration Speed of the UP/DOWN Key with Constant } \\ & \text { Speed }\end{aligned}$
Factory Setting: 0.01
Settings $\quad 0.01 \sim 1.00 \mathrm{~Hz} / \mathrm{ms}$
[1] These settings are used when multi-function input terminals are set to 19 or 20. Refer to Pr.02-09 and 02-10 for the frequency up/down command.

When Pr.02-09 is set to 0 : press the external terminal UP/DOWN key as shown in the following diagram to increase/decrease the frequency command (F). In this mode, it also can be controlled by UP/DOWN key on the digital keypad.

[1] Pr.02-09 set to 1 : it will increase/decrease frequency command (F) by the setting of acceleration/deceleration (Pr.01-12~01-19) and only be valid during operation.

* 02-11 Digital Input Response Time

Factory Setting: 0.005
Settings $0.000 \sim 30.000$ seconds
\llbracket This parameter is to set the response time of digital input terminals FWD, REV and MI1~MI8.It is for digital input terminal signal delay and confirmation. The delay time is confirmation time to prevent some uncertain interference that would cause error in the input of the digital terminals. Under this condition, confirmation for this parameter would improve effectively, but the response time will be somewhat delayed.

* 02-12 Digital Input Operation Setting

Factory Setting: 0
Settings 0000h~FFFFh (0:OFF; 1:ON.)
[10] The setting of this parameter is in hexadecimal.
1 This parameter is to set the input signal level and it won't be affected by the SINK/SOURCE status.
$\mathbb{1}$ Bit0 is for FWD terminal, bit1 is for REV terminal and bit2 to bit15 is for MI1 to MI14.
1 User can change terminal status by communicating.
For example, MI1 is set to 1 (multi-step speed command 1), MI2 is set to 2 (multi-step speed command 2). Then the forward $+2^{\text {nd }}$ step speed command $=1001$ (binary) $=9$ (Decimal). Only need to set Pr.02-12=9 by communication and it can forward with $2^{\text {nd }}$ step speed. It doesn't need to wire any multi-function terminal.

Bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	bit7	bit6	bit5	bit4	bit3	bit2	bit1
bit0														
MI14	MI13	MI12	MI11	MI10	MI9	MI8	MI7	MI6	MI5	MI4	MI3	MI2	MI1	REV
FWD														

$1 \mathbb{1}$ The parameters below set the functions of each multi-function terminal.
$\mathbb{\square}$ Pr.02-36~Pr.02-41 can only be set after installing optional card.
1 The optional card EMC-D42A offers 2 output terminals and can be used with Pr.02-36~02-37.
10] The optional card EMC-R6AA offers 6 output terminals and can be used with Pr.02-36~02-41
\square Summary of function settings (Take the normally open contact for example, ON: contact is closed, OFF: contact is open)

* 02-13 Relay1: Multi Output Terminal

Factory Setting: 11
N 02-14 Relay2: Multi Output Terminal
Factory Setting: 1

N $02-15^{\text {Relay3: Multi Output Terminal }}$

Factory Setting: 0
${ }^{*} 02-16$ Reserved

* 02-17 Reserved
~ 02-36 Expansion Card Output Terminal (MO10) or (RA10)
^ 02-37 Expansion Card Output Terminal (MO11) or (RA11)
~ 02-38 Expansion Card Output Terminal (MO12) or (RA12)
~ 02-39 Output terminal of the I/O extension card (MO13) or (RA13)
N 02-40 Output terminal of the I/O extension card (MO14) or (RA14)
N 02-41 Output terminal of the I/O extension card (MO15) or (RA15)
N 02-42 Output terminal of the I/O extension card (MO16)
N 02 - 43 Output terminal of the I/O extension card (MO17)

N 02-44 Output terminal of the I/O extension card (MO18)
N 02-45 Output terminal of the I/O extension card (MO19)

* 02-46 Output terminal of the I/O extension card (MO20)

MO16, MO17, MO18, MO19, MO20 are virtual terminals. Their functions are controlled by the bit 11~ bit15 of Pr02-18.

Factory Setting: 0

Settings:

0 : No function
1: Operation Indication
2: Operation speed attained
3: Desired Frequency Attained 1 (Parameter 02-22)
4: Desired Frequency Attained 2 (Parameter 02-24)
5: Zero speed (Frequency command)
6: Zero speed, include STOP(Frequency command)
7: Over torque 1
8: Over torque 2
9: Drive is ready
10: Low voltage warning (LV) (Pr.06-00)
11: Malfunction indication
12: Mechanical brake release(Pr.02-32)
13: Overheat warning (Pr.06-15)
14: Software brake signal indication(Pr.07-00)
15: PID feedback error
16: Slip error (oSL)
17: Terminal count value attained, does not return to 0
(Pr.02-20)
18: Preliminary count value attained, returns to 0
(Pr.02-19)
19: External base block input
20: Warning output
21: Over voltage warning
22: Over-current stall prevention warning
23: Over-voltage stall prevention warning
24: Operation mode indication
25: Forward command
26: Reverse command
27: Output when current $>=\operatorname{Pr} .02-33$
28: Output when current $<\operatorname{Pr} .02-33$
29: Output when frequency $>=\operatorname{Pr} .02-34(>=02-34)$

30: Output when frequency $<\operatorname{Pr} .02-34$
31: Y-connection for the motor coil
32: \triangle-connection for the motor coil
33: Zero speed (actual output frequency)
34: Zero speed include stop(actual output frequency)
35: Error output selection 1(Pr.06-23)
36: Error output selection 2(Pr.06-24)
37: Error output selection 3(Pr.06-25)
38: Error output selection 4(Pr.06-26)
40: Speed attained (including Stop)
44: Low current output
45: UVW Magnetic Contactor enabled
47: Brake output closed
50: Output for CANopen control
51: Output for RS485
52: Output for communication card
53: Fire mode indication
54: Bypass fire mode indication
55: Motor \#1 Output
56: Motor \#2 Output
57: Motor \#3 Output
58: Motor\#4 Output
59: Motor\#5 Output
60: Motor \#6 Output
61: Motor\#7 Output
62: Motor\#8 Output
1 This parameter selects the functions for each multi-function terminal.
$\mathbb{\square}$ Pr.02-36~Pr.02-41 can only be set after installing optional card.
The optional card EMC-D42A offers 2 output terminals and can be used with Pr.02-36~02-37.
1 The optional card EMC-R6AA offers 6 output terminals and can be used with Pr.02-36~02-41
1 Summary of function settings (Take the normally open contact for example, ON: contact is closed, OFF: contact is open)

Settings	Functions	Descriptions
0	No Function	This terminal has no function.
1	Operation Indication	Active when the drive is not at STOP.
2	Master Frequency Attained	Active when the AC motor drive reaches the output frequency setting.
3	Desired Frequency Attained 1 (Pr.02-22)	Active when the desired frequency (Pr.02-22) is attained.
4	Desired Frequency Attained 2 (Pr.02-24)	Active when the desired frequency (Pr.02-24) is attained.
5	Zero Speed (frequency command)	Active when frequency command $=0$. (the drive should be at RUN mode)
6	Zero Speed with Stop frequency command)	Active when frequency command $=0$ or stop.

Settings	Functions	Descriptions
7	Over Torque 1	Active when detecting over-torque. Refer to Pr.06-07 (over-torque detection level-OT1) and Pr.06-08 (over-torque detection time-OT1). Refer to Pr.06-06~06-08.
8	Over Torque 2	Active when detecting over-torque. Refer to Pr.06-10 (over-torque detection level-OT2) and Pr.06-11 (over-torque detection time-OT2). Refer to Pr.06-09~06-11.
9	Drive Ready	Active when the drive is ON and no abnormality detected.
10	Low voltage warn (Lv)	Active when the DC Bus voltage is too low. (refer to Pr.06-00 low voltage level)
11	Malfunction Indication	Active when fault occurs (except Lv stop).
12	Mechanical Brake Release (Pr.02-32)	When drive runs after Pr.02-32, it will be ON. This function should be used with DC brake and it is recommended to use contact " b "(N.C).
13	Overheat	Active when IGBT or heat sink overheats to prevent OH turn off the drive. (refer to Pr.06-15)
14	Software Brake Signal Indication	Active when the soft brake function is ON. (refer to Pr.07-00)
15	PID Feedback Error	Active when the feedback signal is abnormal.
16	Slip Error (oSL)	Active when the slip error is detected.
17	Terminal Count Value Attained (Pr.02-20; not return to 0)	Active when the counter reaches Terminal Counter Value (Pr.02-19). This contact won't active when Pr.02-20>Pr.02-19.
18	Preliminary Counter Value Attained (Pr.02-19; returns to 0)	Active when the counter reaches Preliminary Counter Value (Pr.02-19).
19	External Base Block input (B.B.)	Active when the output of the motor drive is shut off during base block.
20	Warning Output	Active when the warning is detected.
21	Over-voltage Warning	Active when the over-voltage is detected.
22	Over-current Stall Prevention Warning	Active when the over-current stall prevention is detected.
23	Over-voltage Stall prevention Warning	Active when the over-voltage stall prevention is detected.
24	Operation Mode Indication	Active when the operation command is controlled by external terminal. (Pr. $00-20 \neq 0$)
25	Forward Command	Active when the operation direction is forward.
26	Reverse Command	Active when the operation direction is reverse.
27	Output when Current $>=\operatorname{Pr} .02-33$	Active when current is $>=\operatorname{Pr} .02-33$.
28	$\begin{aligned} & \text { Output when Current } \\ & <=\text { Pr. } 02-33 \end{aligned}$	Active when current is $<$ Pr.02-33.
29	$\begin{aligned} & \text { Output when } \\ & \text { frequency }>=\text { Pr.02-34 } \end{aligned}$	Active when frequency is $>=\operatorname{Pr} .02-34$.
30	Output when Frequency $<=$ Pr.02-34	Active when frequency is $<\operatorname{Pr}$.02-34.
31	Y-connection for the Motor Coil	Active when PR.05-24 is less than Pr.05-23 and time is more than Pr.05-25.
32	\triangle-connection for the Motor Coil	Active when PR.05-24 is higher than Pr.05-23 and time is more than Pr.05-25.
33	Zero Speed (actual output frequency)	Active when the actual output frequency is 0 . (the drive should be at RUN mode)
34	Zero Speed with Stop (actual output frequency)	Active when the actual output frequency is 0 or Stop.
35	Error Output Selection	Active when Pr.06-23 is ON.

Settings	Functions	Descriptions
	1 (Pr.06-23)	
36	Error Output Selection 2 (Pr.06-24)	Active when Pr.06-24 is ON.
37	Error Output Selection 3 (Pr.06-25)	Active when Pr.06-25 is ON.
38	Error Output Selection 4 (Pr.06-26)	Active when Pr.06-26 is ON.
40	Speed Attained (including zero speed)	Active when the output frequency reaches frequency setting or stop
44	Low Current Output	This function needs to be used with Pr.06-71 ~ Pr.06-73
45	UVW Magnetic Contactor enabled	When the function "54: UVW Magnetic Contactor On/OFF" of Pr02-31 is enabled, this contact will work.
47	Brake Released at Stop	When drive stops, the corresponding multi-function terminal will be ON if the frequency is less than Pr.02-34. After it is ON, it will be OFF when brake delay time exceeds Pr.02-32.
50	Output for CANopen control	For CANopen communication output
51	Output for RS-485	For RS-485 output
52	Out put for communication card	For CMC-MOD01, CMC-EIP01, CMC-PN01, CMC-DN01communication control to do output
53	Fire mode indication	When \#58 or \#59 is enabled, this function will work.
54	By pass fire mode indication	When by pass function is enabled in the fire mode, this contact will work.
55	Motor \#1 output	
56	Motor \#2 output	
57	Motor \#3 output	
58	Motor \#4 output	When setting multi-motor circulative function, the multi-function output terminal
59	Motor \#5 output	
60	Motor \#6 output	
61	Motor \#7 output	
62	Motor \#8 output	

Factory Setting: 0
Settings $\quad 0000 \mathrm{~h} \sim$ FFFh ($0:$ N.O. ; 1:N.C. $)$
[10] The setting of this parameter is in hexadecimal.
[10] This parameter is set via bit setting. If a bit is 1 , the corresponding output acts in the opposite way. For example: If $\operatorname{Pr} 02-13=1$, Relay 1 is open when the drive runs and is closed when the drive is stopped

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
MO20	MO19	MO18	MO17	MO16	MO15	MO14	MO13	MO12	MO11	MO10	Reserved	Reserved	RY3	RY2	RY1

N 02-19 Terminal count value attained (returns to 0)
Factory Setting: 0
Settings 0~65500
[10] The counter trigger can be set by the multi-function terminal MI6 (set Pr.02-06 to 23). Upon completion of counting, the specified output terminal will be activated (Pr.02-13~02-14, Pr.02-36, 02-37 is set to 18). Pr.02-19 can't be set to 0 .

1 When the display shows c5555, the drive has counted 5,555 times. If display shows c5555•, it means that real counter value is between 55,550 to 55,559 .

02 - 20 Preliminary count value attained (not return to 0)
Factory Setting: 0
Settings 0~65500
When the counter value counts from 1 and reaches this value, the corresponding multi-function output terminal will be activated, provided one of Pr. 02-13, 02-14, 02-36, 02-37 set to 17 (Preliminary Count Value Setting). This parameter can be used for the end of the counting to make the drive runs from the low speed to stop.

See the sequence diagram below:

1 It is used to set the signal for the digital output terminals (DFM-DCM) and digital frequency output (pulse X work period=50\%). Output pulse per second $=$ output frequency X Pr.02-21.

02-22 Desired Frequency Attained 1
Factory Setting: 60.00/50.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$
02-24 Desired Frequency Attained 2
Factory Setting: 60.00/50.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$
02-23 The Width of the Desired Frequency Attained 1
Factory Setting: 2.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$

N 02-25 The Width of the Desired Frequency Attained 2
Factory Setting: 2.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$
Once output frequency reaches desired frequency and the corresponding multi-function output terminal is set to 3 or 4 (Pr.02-13, 02-14, 02-36, and 02-37), this multi-function output terminal will be ON.

02
 -32
 Brake Delay Time

Factory Setting: 0.000
Settings $\quad 0.000 \sim 65.000$ seconds
1 When the AC motor drive runs after Pr.02-32 delay time, the corresponding multi-function output terminal (12: mechanical brake release) will be ON. It is recommended to use this function with DC brake.

If this parameter is applied without DC brake, it will be invalid. Refer to the following operation timing.

N 02-33 Output Current Level Setting for Multi-function Output Terminals

Factory Setting: 0
Settings 0~100\%
[10] When output current is larger or equal to Pr.02-33, it will activate multi-function output terminal (Pr.02-13, $02-14,02-16$, and $02-17$ is set to 27).

1 When output current is smaller than Pr.02-33, it will activate multi-function output terminal (Pr.02-13, $02-14,02-16,02-17$ is set to 28).

02-34 Output Boundary for Multi-function Output Terminals
Factory Setting: 0.00
Settings $\quad 0.00 \sim \pm 60.00 \mathrm{~Hz}$
1 When output frequency is higher than Pr.02-34, it will activate the multi-function terminal (Pr.02-13, $02-14,02-16,02-17$ is set to 29).When output frequency is lower than Pr.02-34, it will activate the multi-function terminal (Pr.02-13, 02-14, $02-16,02-17$ is set to 30)

N 02-35 External Operation Control Selection after Reset and Activate
Factory Setting: 0
Settings 0: Disable
1: Drive runs if the run command still exists after reset or re-boots.
Setting 1:
Status 1: After the drive is powered on and the external terminal for RUN keeps ON, the drive will run.
$10]$ Status 2: After clearing fault once a fault is detected and the external terminal for RUN keeps ON, the drive can run after pressing RESET key.

00-47~
00-49
Reserved

02 - 50 Display the Status of Multi-function Input Terminal

(1] For Example:
If Pr.02-50 displays 0034h (Hex), i.e. the value is 52, and 110100 (binary). It means MI1, MI3 and MI4 are active.

$$
\begin{aligned}
& 0=O N \\
& 1=O F F
\end{aligned}
$$

Settings

$$
=\operatorname{bit} 5 \times 2^{5}+\text { bit } 4 \times 2^{4}+b i t 2 \times 2^{2}
$$

$$
=1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{2}
$$

$$
\begin{array}{l|c}
=1 X 2+1 \times 2+1 X 2 & \text { NOTE } \\
=32+16+4=52 & 5
\end{array}
$$

$$
\begin{aligned}
& 2^{5}=322^{4}=16 \quad 2^{1}=8 \quad 2^{2}=4 \\
& 2^{3}=2 \quad . \quad
\end{aligned}
$$

02-51 Status of Multi-function Output Terminal

For Example:
If Pr.02-51 displays 00023 h (Hex), i.e. the value is 35 , and 100011 (binary). It means RY1, RY2 and MO3 are ON.

(1) P.02-52 shows the external multi-function input terminal that used by PLC.

For Example: When Pr.02-52 displays 0034 h (hex) and switching to 110100 (binary), it means MI1, MI3 and MI4 are used by PLC

0: not used by PLC
1: used by PLC
Displays
$=$ bit $5 \times 2^{5}+$ bit $4 \times 2^{4}+$ bit 2×2^{2}
$=1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{2}$
$=32+16+4=52$

$$
\begin{array}{lll}
\text { NOTE } \\
2^{14}=16384 & 2^{13}=8192 & 2^{12}=4096 \\
2^{11}=2048 & 2^{10}=1024 & 2^{9}=512 \\
2^{8}=256 & 2^{7}=128 & 2^{6}=64 \\
2^{5}=322^{4}=16 \quad 2^{3}=8 & 2^{2}=4 \\
2^{1}=2 & 2^{0}=1
\end{array}
$$

02-53 Display Analog Output Terminal occupied by PLC

Factory Setting: Read Only
Pr.02-53 shows the external multi-function output terminal that used by PLC.

Weights Bit

For example:
If the value of Pr.02-53 displays 0003h (Hex), it means RY1and RY2 are used by PLC.

02-54 Display the Frequency Command Memory of External Terminal
Factory Setting:
Read Only
Settings Read Only
11 When the source of frequency command comes from the external terminal, if Lv or Fault occurs at this time, the frequency command of the external terminal will be saved in this parameter.

02-57 Multi-function output terminal: Function 42: Brake Current Checking Point
Factory setting: 0
Settings 0~150\%
02-58 Multi-function output terminal: Function 42: Brake Frequency Checking Point
Factory setting : 0.00
Settings $\quad 0.00 \sim 655.35 \mathrm{~Hz}$
1 Pr02-32, $\operatorname{Pr} 02-33, \operatorname{Pr} 02-34, \operatorname{Pr} 02-57$ and $\operatorname{Pr} 02-58$ can be applied on setting up cranes. (Choose crane action \#42 to set up multi-functional output $\operatorname{Pr} 02-13, \operatorname{Pr} 02-14, \operatorname{Pr} 02-16$, and $\operatorname{Pr} 02-17$)
1 When output current of a drive is higher than the setting of Pr02-33 Pivot Point of the Current (>=02-33) and when output frequency is higher than the setting of Pr02-34 Pivot Point of the Frequency ($>=02-34$), choose \#42 to set up Multi-functional output Pr02-13, Pr02-14, Pr02-16 and Pr002-17 after the delay time set at Pr02-32.
(10) When the Pivot Point of the Current 's setting $02-57 \neq 0$ and when the output current of the drive is lower than the setting of $\operatorname{Pr} 02-57(<02-57)$, or when the output frequency is lower than the setting of $\operatorname{Pr} 02-58$ ($<02-58$), the disable the setting \#42 of the multi-functional output $\operatorname{Pr02-13,~} \operatorname{Pr} 02-14, \operatorname{Pr} 02-16, \operatorname{Pr} 02-17$
1 When Pr02-57 = 0, the output current is lower than setting of Pr02-33 Pivot Point of the current ($<02-33$) or when output frequency is lower than the setting of $\operatorname{Pr02-58(<02-58),~disable~the~setting~of~\# 42~of~the~}$ multi-functional output $\operatorname{Pr} 02-13, \operatorname{Pr} 02-14, \operatorname{Pr} 02-16, \operatorname{Pr02-17}$.

03 Analog Input/Output Parameter

(N The parameter can be set during operation)
N 03-00 Analog Input 1 (AVI1)
Factory Setting: 1
N 03-01 Analog Input 2(ACI)
Factory Setting: 1
N 03-02 Analog Input 3 (AVI2)
Factory Setting: 1
Settings
0 : No function
1 : Frequency command
4 : PID target value (Refer to Group 8)
5 : PID feedback signal (Refer to Group 8)
6 : PTC thermistor input value
$11:$ PT100 thermistor input value
12~17: Reserved
When it is frequency command, the corresponding value for $0 \sim 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$ is $0-$ max. output frequency (Pr.01-00)

N 03-03 Analog Input Bias 1 (AVI1)
Factory Setting: 0
Settings $\quad-100.0 \sim 100.0 \%$
[1] It is to set the corresponding AVI1 voltage of the external analog input 0 .

N 03-04 Analog Input Bias 1 (ACI)
Factory Setting: 0
Settings $\quad-100.0 \sim 100.0 \%$
II It is used to set the corresponding ACI voltage of the external analog input 0 .

03-05 AVI2 Analog Positive Input Bias
Factory Setting: 0
Settings $\quad-100.0 \sim 100.0 \%$
(1) It is used to set the corresponding AVI2 voltage of the external analog input 0 .
[1] The relation between external input voltage/current and setting frequency: $0 \sim 10 \mathrm{~V}(4-20 \mathrm{~mA})$ corresponds to $0-60 \mathrm{~Hz}$.

Factory Setting: 0
Settings 0: Zero bias
1: Lower than bias=bias
2: Greater than bias=bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the centerIn a noisy environment, it is advantageous to use negative bias to provide a noise margin. It is recommended NOT to use less than 1 V to set the operation frequency.

N 03-10 Analog Frequency Command for Reverse Run
Factory Setting: 0
Settings 0: Negative frequency input is disabled. Forward and reverse motions are controlled by digital keypad or by external terminal.
1: Negative frequency input is enabled. Forward motion when positive frequency, reverse motion when negative frequency. Forward and reverse motions are not controlled by digital keypad or by external terminal.

In the diagrams below: Black color line: Frequency. Gray color line: Voltage

Diagram 01

Diagram 02

Diagram 03

Diagram 04

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal. 1: Negative frequency is valid.

Positive frequency = forward run;
negative frequency $=$ reverse run.
Direction can not be switched by digital keypad or external terminal control.
Pr.03-11 Analog Input Gain $1($ AVI1 $)=100 \%$
Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run;
Negative frequency = reverse run.
Direction can not be switched by digital keypad or external terminal control.
Pr.03-11Analog Input Gain1 (AVI1)=100\%

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Negative frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog Input Gain1 (AVI 1) = 100\%

Diagram 05

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (A nalog Frequency Commandfor Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction can not be switched by digital keypad or external terminal control.
Pr.03-11 Analog Input Gain 1(AVI 1)= 100\%

Diagram 06

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Directioncan not be switched by digital keypad or external terminal control.

Pr.03-11Analog Input Gain 1(AVI1)= 100\%

Diagram 07

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog Input Gain 1 (AVI 1) = 100\%

Diagram 09

Diagram 10

Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external terminal control.
Pr.03-11 Analog Input Gain 1 (AVI 1) = 100\%
Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog Input Gain 1(AVI 1) = 100\%

Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog Input Gain 1 (AVI 1)= 100\%

Diagram 11

Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Negative frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external terminal control.
Pr.03-11 Analog Input Gain 1 (AVI 1) = 100\%

Diagram 12

Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog Input Gain 1 (AV 1 I)= 100\%

Diagram 13

Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog Input Gain 1(AVI 1) = 100\%

Diagram 14

Pr.03-03=-10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog Input Gain 1 (AVI 1)= 111.1\%
$10 / 9=111.1 \%$

Diagram 15

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction can not be switched by digital keypad or external terminal control.

Pr.03-11Analog Input Gain 1 (AVI 1)=111.1\%

$$
10 / 9=111.1 \%
$$

Diagram 16

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog Input Gain 1(AVI 1) = 111.1\%
$10 / 9=111.1 \%$

Diagram 17

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog Input Gain 1 (AVI 1) $=111.1 \%$
$10 / 9=111.1 \%$

Diagram 18

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr03-11 Analog Input Gain 1(AVI 1) = 111.1\%
$10 / 9=111.1 \%$

Diagram 19

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr03-11 Analog Input Gain1 $($ AVI 1$)=111.1 \%$

$$
10 / 9=111.1 \%
$$

Diagram 20

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run
Direction can not be switched by digital keypad or external terminal control.
Pr03-11 Analog Input Gain $1(\mathrm{AVI} 1)=111.1 \%$
10/9 =111. 1\%

Diagram 21

Pr.03-03=10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled
by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction can not be switched by digital keypad or external terminal control.

Pr03-11 Analog Input Gain $1($ AVI 1 $)=111.1 \%$
$10 / 9=111.1 \%$

Diagram 22

Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive
frequency = forward run; negative
frequency = reverse run. Direction
can not be switched by digital keypad or
external teriminal control.
Calculate the bias: $\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{\mathrm{XV}} \quad \mathrm{XV}=\frac{10}{9}=1.11 \mathrm{~V}$
\therefore Pr.03-03 $=\frac{1.11}{10} \times 10 \% \%$
Calculate the gain: Pr. $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Diagram 23

Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency $=$ reverse run.
Direction can not be switched by digital keypad or external terminal control.
Calculate the bias: $\quad \frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{\mathrm{XV}} \mathrm{XV}=\frac{10}{9}=1.11 \mathrm{~V}$

$$
\therefore \operatorname{Pr} .03-03=\frac{1.11}{10} \times 100 \%
$$

$$
\text { Calculate the gain: Pr. } 03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%
$$

Diagram 24

Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency $=$ reverse run.
Direction can not be switched by digital keypad or external terminal control.

$$
\begin{aligned}
\text { Calculate the bias: } & \frac{60-6 H z}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{\mathrm{XV}} \mathrm{XV}=\frac{10}{9}=1.11 \mathrm{~V} \\
& \therefore \operatorname{Pr} .03-03=\frac{1.11}{10} \times 100 \% \\
\text { Calculate the gain: } & \operatorname{Pr} .03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%
\end{aligned}
$$

Diagram 25

Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Negative frequency is valid
Positive frequency = forward run;
negative frequency $=$ reverse run
Direction can not be switched by digital keypad or external terminal control.
Calculate the bias: $\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{\mathrm{XV}} \quad \mathrm{XV}=\frac{10}{9}=1.11 \mathrm{~V}$

$$
\therefore \operatorname{Pr} .03-03=\frac{1.11}{10} \times 100 \%
$$

Calculate the gain: \quad Pr. $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Diagram 26

Diagram 27

Diagram 28

Diagram 29

Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias: $\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{\mathrm{XV}} \Rightarrow X V=\frac{10}{9}=1.11 \mathrm{~V}$

$$
\therefore \operatorname{Pr} .03-03=\frac{1.11}{10} \times 100 \%
$$

Calculate the gain: $\operatorname{Pr} .03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Diagram 30

Pr.00-21=0 (Dgital keypad control and d run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AVI2) $=10 \%$
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 Nobias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid Forward and reverse run is controlled by digital keypad or external terminal
1: Negative frequency is valid. Positive frequency forward run; negative frequency reverse run Direction cannot be switched by digital keypad or external terminal control
Pr.03-13 Analog Input Gain 3 (AVI2)=100\%
Pr.03-14 Analog Input Gain 4 (AVI2) $=100 \%$

Diagram 31

Pr.00-21 $=0$ (Dgital keypad control and d run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AVI2) $=10 \%$
Pr.03-07~03-09 (Positive/Ne gative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequenc y Command forReverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid. Positive frequency = forward run; neg ative frequency $=$ reverse run. Direction can notbe switched by digital keypad or external terminal control.
Pr.03-13 Analog Input Gain 3 (AVI2) $=100 \%$
Pr.03-14 Analog Input Gain $4($ AVI2 $)=100 \%$

Diagram 32

Pr.00-21=0 (Digital keypad control and d run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias (AVI2) $=10 \%$
Pr.03-07~03-09 (Positive/Negative Bias Mode)
D: No bias
1: Lower thna or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction cannot be switched by digital keypad or
external teriminal control.
Pr.03-13 Analog Input Gain 3 (AVI2)= 100\%
Pr.03-14 Analog Input Gain 4 (AVI2) $=100 \%$

Diagram 33

Pr.00-21=0 (Digital keypad control and d run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias (AVI2) = 10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command forReverse Run)
0 : Negative frequency is not valid Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.
Pr.03-13 Analog Input Gain3 (AVI2) $=100 \%$
Pr.03-14 Analog Input Gain 4 (AVI2)= 100\%
Diagram 34

Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AVI2) = 10\% Pr.03-07~03-09 (Positive/Negative Bias Mode)

0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command forReverse Run) 0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-13 Analog Input Gain 3 (AVI2)=100\%
Pr.03-14 Analog Input Gain 4 (AVI2) $=100 \%$

Diagram 35

Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AVI2) $=10 \%$
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external terminal control.
Pr.03-13 Analog Input Gain 3 (AVI2) $=100 \%$
Pr.03-14 Analog Input Gain 4 (AVI2) $=100 \%$
Diagram 36

Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AVI2) $=10 \%$ Pr.03-07~03-09 (Positive/Negative Bias Mode)

0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction can not be switched by digital keypad or external terminal control.

Pr.03-13 Analog Input Gain 3 (AVI2) $=100 \%$
Pr.03-14 Analog Input Gain 4 (AVI2)= 100\%

Diagram 37

Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AVI2) = 10\%
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.
Pr.03-13 Analog Input Gain 3 (AVI2) = 100\%
Pr.03-14 Analog Input Gain 4 (AVI2) = 100\%

Diagram 38

Diagram 39

Diagram 40

Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AVI2) $=10 \%$ Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.
Pr.03-13 Analog Input Gain 3 (AVI2)= 111.1\%
Pr.03-14 Analog Input Gain $4(A V I 2)=111.1 \%$

Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AVI2) $=10 \%$ Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency $=$ reverse run.
Direction can not be switched by digital keypad or external terminal control.

Pr.03-13 Analog Input Gain 3 (AVI2)= 100\%
Pr.03-14 Analog Input Gain $4(A V I 2)=90.9 \%$

Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AVI2) $=10 \%$ Pr.03-07~03-09 (Positive/Negative Bias Mode)

0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage

while serving as the center

4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency $=$ reverse run.
Direction cannot be switched by digital keypad or external terminal control.

Pr.03-13 Analog Input Gain 3 (AVI2)= 111.1\%
Pr.03-14 Analog Input Gain 4 (AVI2) $=90.9 \%$

Diagram 41

Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AVI2) = 10\% Pr.03-07~03-09 (Positive/Negative Bias Mode)

0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency $=$ reverse run.
Direction can not be switched by digital keypad or external terminal control.
Pr.03-13 Analog Input Gain 3 (AVI2)= 111.1\%
Pr.03-14 Analog Input Gain $4(A V I 2)=90.9 \%$

Diagram 42

Pr.00-21=0 (Digital keypad control and run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias (AVI2) $=10 \%$
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction cannot be switched by digital keypad or external terminal control.
Pr.03-13 Analog Input Gain 3 (AVI2) $=111.1 \%$
$(10 / 9) * 100 \%=111.1 \%$
Pr.03-14 Analog Input Gain 4 (AVI2) $=90.9 \%$
$(10 / 11) * 100 \%=90.9 \%$

Diagram 43

Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AVI2) $=10 \%$ Pr.03-07~03-09 (Positive/Negative Bias Mode)

0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled
by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction cannot be switched by digital keypad or external terminal control.
Pr.03-13 Analog Input Gain 3 (AVI2)= 111.1\%
$(10 / 9) * 100 \%=111.1 \%$
Pr.03-14 Analog Input Gain $4(\mathrm{AVI} 2)=90.9 \%$
$(10 / 11) * 100 \%=90.9 \%$

Diagram 44

Pr.00-21=0 (Digital keypad control and run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias (AVI2) $=10 \%$
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction cannot be switched by digital keypad or
external terminal control.

Diagram 45

Pr.00-21=0 (Digital keypad control and run in FWD direction)
Pr.03-05 Analog Positive Voltage Input Bias $($ AVI2 $)=10 \%$
Pr.03-07~03-09 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run;
Negative frequency $=$ reverse run.
Direction cannot be switched by digital keypad or
external terminal control
Pr.03-13 Analog Input Gain 3 (AVI2) $=111.1 \%$
$(10 / 9) * 100 \%=111.1 \%$
Pr.03-14 Analog Input Gain 4 (AVI2) $=90.9 \%$
$(10 / 11) * 100 \%=90.9 \%$

N 03-11 Analog Input Gain 1 (AVI1)
N 03-12 Analog Input Gain 2 (ACI)
N 03-13 Analog Input Gain 3 (AVI2)
N 03-14 Analog Input Gain 4 (AVI2)
Factory Setting: 100.0
Settings $\quad-500.0 \sim 500.0 \%$
Parameters 03-03 to 03-14 are used when the source of frequency command is the analog voltage/current signal.

N $03-15$ Analog Input Filter Time (AVI1)
N $03-16$ Analog Input Filter Time (ACI)
N 03-17 Analog Input Filter Time (AVI2)
Factory Setting: 0.01
Settings $0.00 \sim 20.00$ secondsThese input delays can be used to filter noisy analog signalWhen the setting of the time constant is too large, the control will be stable but the control response will be slow. When the setting of time constant is too small, the control response will be faster but the control may be unstable. To find the optimal setting, please adjust the setting according to the control stable or response status.

N 03-18 Addition Function of the Analog Input
Factory Setting: 0
Settings 0 : Disable (AVI1 , ACI, AVI2)
1 : Enable
When $\operatorname{Pr} .03-18$ is set to 0 and the analog input setting is the same, the priority for AVI1, ACI and AVI2 are AVI1>ACI>AVI2.


```
Fcommand=[(ay bias)*gain]*}\frac{Fmax(01-00)}{10V or 16mA
Fcomman d: the corresp onding
frequen cy for 10V or 20mA
ay:10 or 16mA
bias: Pr.03-03,Pr.03-04, Pr.03-05
gain : Pr.03-11, Pr.03-12, Pr.03-13,Pr.03-14
```

$03-19$ Loss of the ACI Signal
Factory Setting: 0
Settings 0: Disable
1: Continue operation at the last frequency
2: Decelerate to stop
3: top immediately and display ACE
This parameter determines the behAVI1 or when ACI is lost.
When Pr.03-29 is set to 1 , it means ACI terminal is for $0-10 \mathrm{~V}$ voltage input. At this moment, Pr.03-19 will be invalid.

1 When the setting is 1 or 2 , a warning code "AnL" will be displayed on the keypad when ACI signal is lost. The keypad will keep on blinking until the ACI signal is recovered.When the setting is 3, a warning code "ACE" will be displayed on the keypad when ACI signal is lost. Then the keypad will keep on blinking until ACI signal is recovered and the error is fixed.

N 03-20 Multi-function Output 1 (AFM1)
Factory Setting: 0
03-23 Multi-function Output 2 (AFM2)
Factory Setting: 0

Settings 0~23

Function Chart

Settings	Functions	Descriptions
0	Output frequency (Hz)	Max. frequency Pr.01-00 is regarded as 100%.
1	Frequency command (Hz)	Max. frequency Pr.01-00 is regarded as 100%.
2	Motor speed (Hz)	$6(00 \mathrm{~Hz}$ is regarded as 100%
3	Output current (rms)	$(2.5 \mathrm{X}$ rated current) is regarded as 100%
4	Output voltage	$(2 \mathrm{X}$ rated voltage) is regarded as 100%
5	DC Bus Voltage	$450 \mathrm{~V}(900 \mathrm{~V})=100 \%$
6	Power factor	$-1.000 \sim 1.000=100 \%$
7	Power	Rated power is regarded as 100%
9	AVI1 $\%$	$(0 \sim 10 \mathrm{~V}=0 \sim 100 \%)$
10	ACI $\%$	$(0 \sim 20 \mathrm{~mA}=0 \sim 100 \%)$
11	AVI2\%	$(0 \sim 10 \mathrm{~V}=0 \sim 100 \%)$
20	CANopen analog output	
21	RS485 analog output	Analog output for communication card
22	For communication output (CMC-MOD01, CMC-EIP01, CMC-PN01, CMC-DN01)	
23	Constant voltage output	Voltage output level can be controlled by Pr.03-32 and Pr03-33.Example: Set Pr03-32 to 0~100.00\% which corresponds to 0~10V of AFM1. Set Pr03-33 to 0~100.00\% which corresponds to 0~10V of AFM2.

N 03-21 Gain for Analog Output 1 (AFM1)
Factory Setting: 100.0
N 03-24 Gain for Analog Output 2 (AFM2)
Factory Setting: 100.0
Settings $\quad 0 \sim 500.0 \%$
It is used to adjust the analog voltage level (Pr.03-20) that terminal AFM outputs.This parameter is set the corresponding voltage of the analog output 0 .
N 03-22 Analog Output 1 Value in REV Direction (AFM1)
Factory Setting: 0
N 03-25 Analog Output 2 Value in REV Direction (AFM2)
Factory Setting: 0
Settings 0: Absolute value in REV direction
1: Output 0 V in REV direction; output $0-10 \mathrm{~V}$ in FWD direction
2: Output $5-0 \mathrm{~V}$ in REV direction; output $5-10 \mathrm{~V}$ in FWD direction

$03-25=0$
$03-25=2$
Selections for the analog output direction

03-26 Reserved
 * 03-27 AFM2 Output Offset

Factory Setting: 0.00
Settings $-100,00 \sim 100.00 \%$
[1] Example 1, AFM2 $0-10 \mathrm{~V}$ is set output frequency, the output equation is
$10 \mathrm{~V} \times\left(\frac{\text { Output Frequency }}{01-00}\right) \times 03-24+10 \mathrm{~V} \times 03-27$
[1] Example 2, AFM2 0-20mA is set output frequency, the output equation is
$20 \mathrm{~mA} \times\left(\frac{\text { Output Frequency }}{01-00}\right) \times 03-24+20 \mathrm{~mA} \times 03-27$
Example 3, AFM2 4-20mA is set output frequency, the output equation is
$4 \mathrm{~mA}+16 \mathrm{~mA} \times\left(\frac{\text { Output Frequency }}{01-00}\right) \times 03-24+16 \mathrm{~mA} \times 03-27$

~ 03-28 AVII Selection

Factory Setting: 0

Settings	$0: 0-10 \mathrm{~V}$
	$1: 0-20 \mathrm{~mA}$
	$2: 4-20 \mathrm{~mA}$

~ 03-29
ACI Selection
Factory Setting: 0
Settings $\quad 0: 4-20 \mathrm{~mA}$
1: $0-10 \mathrm{~V}$
2: $0-20 \mathrm{~mA}$
1 When changing the input mode, please check if the switch of external terminal (SW3, SW4) corresponds to the setting of Pr.03-28~03-29.

N 03-30 Status of PLC Output Terminal
Factory Setting: 000h
Settings 0000h~FFFFh
Monitor the status of PLC analog output terminals
P.03-30 shows the external multi-function output terminal that used by PLC

Weights		${ }^{15}$	$2^{14} 2$	$2^{13} 2^{13}$	${ }^{12} 2$	$2^{11} 2^{10} 2^{9}$		2^{8}	2						2	2	2	$\begin{aligned} & 0=O N \\ & 1=O F F \end{aligned}$
Bit	15	14	13	12	11	110	9	8	7	6	5			3	2	1	0	-AFM 1
																\uparrow		AFM 2

NOTE		
$2^{7}=128$	$2^{6}=64$	
$2^{5}=32$	$2^{2}=16$	$2^{3}=8$
$2^{2}=4$	$2^{1}=2$	$2^{0}=1$

For Example:
If the value of Pr.02-30 displays $0002 \mathrm{~h}(\mathrm{Hex})$, it means AFM1and AFM2 are used by PLC.

$$
\begin{aligned}
& 0=\text { Not used by PLC } \\
& 1=\text { Used by PLC }
\end{aligned}
$$

Display value
$2=1 \times 2^{1}+0 \times 2^{0}$

$$
=\text { bit } 1 \times 2^{1}+\text { bit } 0 \times 2^{0}
$$

03-31 AFM2 0-20mA Output Selection

Settings $\quad 0: 0-20 \mathrm{~mA}$ output 1: 4-20mA output

03-32 AFM1 DC Output Setting Level
 03-33 AFM2 DC Output Setting Level

Factory Setting: 0.00
Settings $\quad 0.00 \sim 100.00 \%$
(4003-32 and Pr03-33 work with the setting "\#23 Constant voltage output" of "Pr03-20 \& Pr03-23" to set up the constant voltage at AFM. For example: At Pr03-22, set $0 \sim 100.00 \%$ to correspond to the $0 \sim 10 \mathrm{~V}$ of AFM1. At Pr03-33, set $0 \sim 100.00 \%$ to correspond to the $0 \sim 10 \mathrm{~V}$ of AFM2

03-34 AFM1 0~20mA Output Selection

Factory Setting : 0
Settings $\quad 0: 0 \sim 20 \mathrm{~mA}$ output
1: 4~20mA output

03-50 Analog Calculation Selection

Factory Setting : 7
Settings $\quad 0 \sim 7$
Set $\operatorname{Pr} 03-50=0$, all analog input signal are calculated by using bias and gain.
\square Set $\operatorname{Pr} 03-50=1$, $\mathrm{AVI1}$ is calculated by using frequency and voltage/current in corresponding format ($\operatorname{Pr} 03-51 \sim \operatorname{Pr} 03-56$), other analog input signals are calculated by using bias and gain.
[a] Set Pr03-50 $=2$, ACI is calculated by using frequency and voltage/current in corresponding format (Pr03-57 ~ Pr03-62), other analog input signals are calculated by using bias and gain.
(1) Set Pr03-50 =3, AVI1 and ACI are calculated by using frequency and voltage/current in corresponding format ($\operatorname{Pr} 03-51 \sim \operatorname{Pr} 03-62$), other analog input signals are calculated by using bias and gain.

Led $\operatorname{Pr} 03-50=4$, AVI2 is calculated by using frequency and voltage in corresponding format ($\operatorname{Pr} 03-63$ $\sim \operatorname{Pr} 03-68$), other analog input signals are calculated by using bias and gain.

Set Pr03-50=5, AVI and AVI2 are calculated by using frequency and voltage/current in corresponding format ($\operatorname{Pr} 03-51 \sim \operatorname{Pr} 03-5, \operatorname{Pr} 03-63 \sim \operatorname{Pr} 03-68$), other analog input signal are calculated by using bias and gain.
(1) Set Pr03-50=6, ACI and AVI2 are calculated by using frequency and voltage/current in corresponding format ($\operatorname{Pr} 03-57 \sim \operatorname{Pr} 03-68$), other analog input signals are calculated by using bias and gain.
[1] Set $\operatorname{Pr} 03-50=7$, all the analog input signals are calculated by using frequency and voltage/current in corresponding format ($\operatorname{Pr} 03-51 \sim \operatorname{Pr} 03-68$)

03-51 AVI1 - Low Point
Factory Setting : 0.00
Setting $0.00 \sim 10.00 / 0.00 \sim 20.00$

03-52 AVI1 Low Point Percentage
Factory Setting : 0\%
Setting $\quad 0 \sim 100 \%$

03-53 AVI1 Mid Point
Factory Setting : 5.00
Setting $\quad 0.00 \sim 10.00 / 0.00 \sim 20.00$

03-54 AVI1 Mid Point Percentage
Factory Setting : 50\%
Setting $\quad 0 \sim 100 \%$

03-55 AVI1 High Point
Factory Setting : 10.00
Setting $\quad 0.00 \sim 10.00 / 0.00 \sim 20.00$

03-56 AVI1 High Point Percentage
Factory Setting : 50\%
Setting $0 \sim 100 \%$

03-57 ACI Low Point
Factory Setting : 4.00
Setting $\quad 0.00 \sim 10.00 / 0.00 \sim 20.00$

03-58 ACI Low Point Percentage
Factory Setting : 0\%
Setting $\quad 0 \sim 100 \%$

03-59 ACI Mid Point
Factory Setting : 12.00
Setting $\quad 0.00 \sim 10.00 / 0.00 \sim 20.00$

03-60
ACI Mid Point Percentage
Factory Setting : 50\%
Setting $\quad 0 \sim 100 \%$
03-61 ACI High Point
Factory Setting : 20.00
Setting $\quad 0.00 \sim 10.00 / 0.00 \sim 20.00$

03-62 ACI High Point Percentage
Factory Setting : 100
Setting $0 \sim 100 \%$

03-63 AVI2 Low Point Voltage
Factory Setting: 0V
Setting $\quad 0.00 \sim 10.00 \mathrm{~V}$

03-64 AVI2 Low Point Percentage
Factory Setting: 0\%
Setting $0 \sim 100 \%$

03-65 AVI2 Mid Point Voltage
Factory Setting : 5.00V
Setting $\quad 0.00 \sim 10.00 \mathrm{~V}$

03-66 AVI2 Mid Point Percentage
Factory Setting : 50\%
Setting $0 \sim 100 \%$

03-67 AVI2 High Point Voltage
Factory Setting : 10.00 V
Setting $\quad 0.00 \sim 10.00 \mathrm{~V}$

03-68 AVI2 High Point Percentage
Factory Setting :100\%
Setting $0 \sim 100 \%$
[ad When AVI1 Selection (Pr03-28) is AVI, the setting range of $\operatorname{Pr} 03-51, \operatorname{Pr} 03-52, \operatorname{Pr} 03-55$ have to be $0.00 \sim 10.00$ or 0.00~20.00.
[a] When ACI Selection (Pr03-29) is AVI, the setting range of $\operatorname{Pr} 03-57, \operatorname{Pr} 03-59$ and $\operatorname{Pr} 03-61$ have to be $0.00 \sim 10.00$ or $0.00 \sim 20.00$.
[1] The analog input values can be set at $\operatorname{Pr} 03-51 \sim \operatorname{Pr} 03-68$ and the maximum operating frequency can be set at Pr01-00. The corresponding functions of open-loop control are shown as image below.

04 Multi-Step Speed Parameters \mathbb{N} The parameter can be set during operation.

N 04-00 1st Step Speed Frequency
N 04-01 2nd Step Speed Frequency
N 04-02 3rd Step Speed Frequency
N 04-03 4th Step Speed Frequency
N 04-04 5th Step Speed Frequency
N 04-05 6th Step Speed Frequency
N 04-06 7th Step Speed Frequency
N 04-07 8th Step Speed Frequency
N 04-08 9th Step Speed Frequency
N 04-09 10th Step Speed Frequency
N 04-10 11th Step Speed Frequency
N 04-11 12th Step Speed Frequency
N 04-12 13th Step Speed Frequency
N 04-13 14th Step Speed Frequency
N 04-14 15th Step Speed Frequency
Factory Setting: 0.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$The Multi-function Input Terminals (refer to setting 1~4 of Pr.02-01~02-08 and 02-26~02-31) are used to select one of the AC motor drive Multi-step speeds (max. 15 speeds). The speeds (frequencies) are determined by Pr.04-00 to 04-14 as shown in the following.The run/stop command can be controlled by the external terminal/digital keypad/communication via Pr.00-21.Each one of multi-step speeds can be set within $0.0 \sim 600.0 \mathrm{~Hz}$ during operationExplanation for the timing diagram for multi-step speeds and external terminals The Related parameter settings are:

1. Pr.04-00~04-14: setting multi-step speeds (to set the frequency of each step speed)
2. Pr.02-01~02-08, 02-26~02-31: setting multi-function input terminals (multi-step speed 1~4)
> Related parameters: 01-22 JOG Frequency, 02-01 Multi-function Input Command 1 (MI1), 02-02 Multi-function Input Command 2 (MI2), 02-03 Multi-function Input Command 3 (MI3), 02-04 Multi-function Input Command 4 (MI4)

04-15
 $\sim 04-49^{\text {Reserved }}$

04-50 PLC Buffer 1
04-51 PLC Buffer 2
04-52 PLC Buffer 3
04-53 PLC Buffer 4
04-54 PLC Buffer 5
04-55 PLC Buffer 6
04-56 PLC Buffer 7
04-57 PLC Buffer 8
04-58 PLC Buffer 9
04-59 PLC Buffer 10
Factory Setting: 0
Settings 0~65535
凹】 The Pr 04-50~Pr04-59 can be combined with PLC or HMI programming for variety application.The Pr04-50~Pr04-59 will record last data before power off.

05 Motor Parameters

\wedge The parameter can be set during operation．

05 － 00 Motor Auto Tuning

Factory Setting： 0
Settings 0 ：No function
1：Measure induction motor in dynamic status（motor spinning）
（Rs，Rr，Lm，Lx，no－load current）
2 ：Measure induction motor in static status（motor not spinning）

Induction Motor

$10 \square$ Start auto tuning by press the【Run】 key and the measured value will be written into motor 1 （Pr．05－05 $\sim 05-09$ ，Rs，Rr，Lm，Lx，no－load current）and motor 2 （Pr．05－17 to Pr．05－21）automatically．

AUTO－Tuning Process（dynamic motor）：
1．Make sure that all the parameters are set to factory settings and the motor wiring is correct．
2．Make sure the motor has no－load before executing auto－tuning and the shaft is not connected to any belt or gear motor．It is recommended to set to 2 if the motor can＇t separate from the load．
3.

	Motor 1	Motor 2
Motor Rated Frequency	$01-01$	$01-35$
Motor Rated Voltage	$01-02$	$01-36$
Motor Full－load Current	$05-01$	$05-13$
Motor Rated Power	$05-02$	$05-14$
Motor Rated Speed	$05-03$	$05-15$
Motor Pole Numbers	$05-04$	

4．Set Pr． $05-00=1$ and press the the【Run】 key，the drive will begin auto－tuning．Please be aware motor starts spinning when the【Run】 key is pressed．
5．When auto－tuning is complete，please check if the measured values are written into motor 1
（Pr．05－05～05－09）and motor 2 （Pr．05－17～05－21）automatically．
6．Mechanical equivalent circuit

※ If Pr.05-00 is set to 2 , it needs to input Pr.05-05 for motor $1 / \operatorname{Pr} .05-17$ for motor 2.

\square NOTE

च In torque/vector control mode, it is not recommended to have motors run in parallel.
\square It is not recommended to use torque/vector control mode if motor rated power exceeds the rated power of the AC motor drive
\boxtimes When auto-tuning 2 motors, it needs to set multi-function input terminals (setting 14) or change Pr.05-22 for motor $1 /$ motor 2 selection.
$\square \quad$ The rated speed can't be larger or equal to $120 \mathrm{f} / \mathrm{p}$ (f: rated frequency 01-01/01-35; P : number of motor poles 05-04/05-16).

05-01 Full-Load Current of Induction Motor 1 (A)

Unit: Ampere
Factory Setting: \#.\#\#
Settings 10 to 120% of drive's rated current
This value should be set according to the rated frequency of the motor as indicated on the motor nameplate. The factory setting is $90 \% \mathrm{X}$ rated current

Example: The rated current for $7.5 \mathrm{HP}(5.5 \mathrm{~kW})$ is 25 and factory setting is 22.5 A . The range for setting will be $10 \sim 30 \mathrm{~A} .\left(25 * 40 \%=10 \mathrm{~A}\right.$ and $\left.25^{*} 120 \%=30 \mathrm{~A}\right)$
N 05-02 Rated Power of Induction Motor 1(kW)
Factory Setting: 0
Settings $\quad 0 \sim 655.35 \mathrm{~kW}$
©0] It is used to set rated power of the motor 1. The factory setting is the power of the drive
N 05-03 Rated Speed of Induction Motor 1 (rpm)
Factory Setting:
$1710(60 \mathrm{~Hz} 4$ poles $)$
1410 (50 Hz 4 poles)
Settings $\quad 0 \sim 65535$
Ind is used to set the rated speed of the motor and need to set according to the value indicated on the motor nameplate.Before setting up this parameter, you need to set up Pr05-04.
05 - 04 Pole Number of Induction Motor 1
Factory Setting: 4
Settings 2~20It is used to set the number of motor poles (must be an even number).Set up Pr05-04 before you set up Pr05-03
05 - 05 No-load Current of Induction Motor 1 (A)
Unit: Ampere
Factory Setting: 0
Settings 0 to the factory setting in Pr.05-01
(1)] Factory setting is 40% of the drive's rated current. .

05 - 06 Stator Resistance(Rs) of Induction Motor 1
Factory Setting: 0.000
Settings $\quad 0.000 \sim 65.535 \Omega$

05 - 07 Rotor Resistance (Rr) of Mo1
Factory Setting : 0
Settings $\quad 0.000 \sim 65.535 \Omega$

05-08 Magnetizing Inductance (Lm) of Induction Motor 1
Factory Setting : 0.0
Settings $\quad 0.0 \sim 6553.5 \mathrm{mH}$

05 - 09 Stator Inductance (Lx) of Induction Motor 1
Factory Setting : 0.0
Settings $\quad 0.0 \sim 6553.5 \mathrm{mH}$

$$
\begin{aligned}
& 05-10 \\
& 05-11 \\
& 05-12
\end{aligned} \quad \text { Reserved }
$$

05 - 13 Full Load Current of Induction Motor 2 (A)

Unit: Ampere
Factory Setting: \#.\#\#
Settings 10~120\%
10 This value should be set according to the rated frequency of the motor as indicated on the motor nameplate. The factory setting is $90 \% \mathrm{X}$ rated current.
[10] Example: The rated current for $7.5 \mathrm{HP}(5.5 \mathrm{~kW})$ is 25 A and factory setting is 22.5 A . The range for setting will be $10 \sim 30 \mathrm{~A} .(25 * 40 \%=10 \mathrm{~A}$ and $25 * 120 \%=30 \mathrm{~A})$

N 05-14 Rated Power of Induction Motor $2(\mathrm{~kW})$
Factory Setting: \#.\#\#
Settings $\quad 0 \sim 655.35 \mathrm{~kW}$
$\mathbb{1} \mathbb{1}$ It is used to set rated power of the motor 2. The factory setting is the power of the drive.
N 05-15 Rated Speed of Induction Motor 2 (rpm)
Factory Setting: 1710
$1710(60 \mathrm{~Hz} 4$ poles) ;
$1410(50 \mathrm{~Hz} 4$ poles)

Settings 0~65535
Ina it is used to set the rated speed of the motor and need to set according to the value indicated on the motor nameplate.
$05-16$ Pole Number of Induction Motor 2
Factory Setting: 4
Settings 2~20
ITd It is used to set the number of motor poles (must be an even number)
05-17 No-load Current of Induction Motor 2 (A)
Unit: Ampere
Factory Setting: 0
Settings 0 to the factory setting in Pr.05-01
[1] The factory setting is $40 \% \mathrm{X}$ rated current.
05-18 Stator Resistance (Rs) of Induction Motor 2
Factory Setting: 0.000
Settings $\quad 0.000 \sim 65.535 \Omega$

N 05-19 Rotor Resistance (Rr) of Motor 2
Factory Setting : 0.000
Settings $\quad 0.000 \sim 65.535 \mathrm{~m} \Omega$

05-20 Magnetizing Inductance (Lm) of Induction Motor 2
Factory Setting : 0.0
Settings $\quad 0.0 \sim 6553.5 \mathrm{mH}$

N 05-21 Stator Inductance (Lx) of Induction Motor 2
Factory Setting : 0.0
Settings $\quad 0.0 \sim 65535 \mathrm{mH}$

05-22 Induction Motor 1/2 Selection
Factory Setting: 1
Settings 1: Motor 1
2: Motor 2
[1] To set the motor that driven by the AC motor drive.
N 05-23 Frequency for Y-connection/ \triangle-connection Switch of Induction Motor
Factory Setting: 60.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$

05-24 Y-connection/ \triangle-connection Switch of Induction Motor IM

Factory Setting: 0
Settings 0: Disable
1: Enable

N 05-25 Delay Time for Y-connection/ \triangle-connection Switch of Induction Motor
Factory Setting: 0.200
Settings $\quad 0 \sim 60.000$ seconds
Pr 05-23 and Pr.05-25 are applied in the wide range motors and the motor coil will execute the switch of Y-connection/ Δ-connection as required. (The wide range motors has relation with the motor design. In general, it has higher torque at low speed and Y-connection and it has higher speed at high speed and . connection.
(1)] Pr.05-24 is used to enable/disable Y-connection/ $\tilde{\Delta}$-connection Switch.
(1) When Pr.05-24 is set to 1 , the drive will select by Pr.05-23 setting and current motor frequency to switch motor to Y-connection or $\dot{\Delta}$-connection: At the same time, it will also affect motor parameters.
(1) Pr.05-25 is used to set the switch delay time of Y-connection/ $/$-connection.
(1)] When output frequency reaches Y-connection/ Δ-connection switch frequency, drive will delay by Pr.05-25 before multi-function output terminals are active.

Y- sconnection switch: can be used for wide range motor Y -connection for low speed: higher torque can be used for rigid tapping \triangle-connection for high speed: higher torque can be used for high-speed drilling

05-26 Accumulative Watt Per Second of Motor in Low Word (W-sec)
Factory Setting: 0.0
Settings Read only
05-27 Accumulative Watt Per Second of Motor in High Word (W-sec)
Factory Setting: 0.0
Settings Read only
05-28
Accumulative Watt-hour of Motor (W-Hour)
Factory Setting: 0.0
Settings Read only
$05-29$ Accumulative Watt-hour of Motor in Low Word (KW-Hour)
Factory Setting: 0.0
Settings Read only
05 - 30 Accumulative Watt-hour of Motor in High Word (KW-Hour)
Factory Setting: 0.0
Settings Read only
Pr.05-26~05-29 records the amount of power consumed by motors. The accumulation begins when the drive is activated and record is saved when the drive stops or turns OFF. The amount of consumed watts will continue to accumulate when the drive activate again. To clear the accumulation, set Pr.00-02 to 5 then the accumulation record will return to 0 .

05-31 Accumulative Motor Operation Time (Min)
Factory Setting: 00
Settings 00~1439

05 - 32 Accumulative Motor Operation Time (day)
Factory Setting: 0
Settings 00~65535
[D] Pr. 05-31 and Pr.05-32 are used to record the motor operation time. They can be cleared by setting to 00 and time won't be recorded when it is less than 60 seconds

06 Protection Parameters N The parameter can be set during operation

Factory Setting: 180.0/360.0
Frame E and above:
200.0/400.0

Settings 230 V models: $160.0 \sim 220.0 \mathrm{~V}$
 Frame E and above: $190.0 \sim 220.0 \mathrm{~V}$
 460 V models: $320.0 \sim 440.0 \mathrm{~V}$
 Frame E and above: $380.0 \sim 440.0 \mathrm{~V}$

1 It is used to set the Lv level. When the drive is in the low voltage, it will stop output and free to stop.

Over-voltage Stall Prevention
Factory Setting: 380.0/760.0
Settings 230 V models: $350.0 \sim 450.0 \mathrm{~V}$
460 V models: 700.0~900.0V
$0:$ Disable this function
$\mathbb{1}$ When the setting is 0.0 , the over-voltage Stall prevention is disabled.During deceleration, the DC bus voltage may exceed its Maximum Allowable Value due to motor regeneration. When this function is enabled, the AC motor drive will not decelerate further and keep the output frequency constant until the voltage drops below the preset value again.

1 This function is used for the occasion that the load inertia is unsure. When it stops in the normal load, the over-voltage won't occur during deceleration and fulfill the setting of deceleration time. Sometimes, it may not stop due to over-voltage during decelerating to stop when increasing the load regenerative inertia. At this moment, the AC drive will auto add the deceleration time until drive stop
(1) When the over-voltage stall prevention is enabled, drive deceleration time will be larger than the setting
[1]
When there is any problem as using deceleration time, refer to the following items to solve it.

1. Add the suitable deceleration time.
2. Add brake resistor (refer to appendix B-1 for details) to consume the electrical energy that regenerated from the motor with heat type.

Related parameters: Pr.01-13, 01-15, 01-17, 01-19 (settings of decel. time 1~4), Pr.02-13~02-15
(Multi-function Output 1 RY1, RY2, RY3).

Settings 0: Traditional over-voltage stall prevention
Factory Setting: 0
1: Smart over-voltage prevention
(1) When Pr.06-02 is set to 1 , the drive will maintain DCbus voltage when decelerating and prevent OV.

Settings Normal duty : 0~160\% (100\% drive's rated current)
Factory Setting: 120
Light duty : 0~130\% (100% drive's rated current)
Factory Setting: 120
[a] If the motor load is too large or drive acceleration time is too short, the AC drive output current may increase abruptly during acceleration and it may cause motor damage or trigger protection functions (OL or OC). This parameter is used to prevent this situation
1 During acceleration, the AC drive output current may increase abruptly and exceed the value specified by Pr.06-03 due to rapid acceleration or excessive load on the motor. When this function is enabled, the AC drive will stop accelerating and keep the output frequency constant until the current drops below the maximum value.

10 When the over-current stall prevention is enabled, drive acceleration time will be larger than the setting
[1] When the Over-Current Stall Prevention occurs due to too small motor capacity or in the factory setting, please decrease Pr.06-03 setting.

When there is any problem by using acceleration time, refer to the following items to solve it

1. Add the suitable acceleration time.
2. Set Pr01-44 Optimal Acceleration/Deceleration Setting, to 1,3 or 4
3. Related parameters: Pr01-12 Accel. Time 1, Pr01-14 Accel. Time 2, Pr01-16 Time 3, Pr01-18 Accel. Time 4, Pr01-44 Optimal Acceleration/Deceleration Setting, Pr02-13 Relay1: Multi Output Terminal, Pr02-14 Relay2: Multi Output Terminal, Pr02-15 Relay3: Multi Output Terminal,

$\xrightarrow{\text { Original setting of acceleration time }}$
actual acceleration time when over-current stall prevention is enabled

* 06-04 Over-current Stall Prevention during Operation

Settings Normal duty : $0 \sim 160 \%$ (100% drive's rated current)
Light duty: $0 \sim 130 \%$ (100% drive's rated current)
[0] It is a protection for drive to auto decrease output frequency when the motor is over-load abruptly during motor constant operation.
[2] If the output current exceeds the setting specified in Pr.06-04 when the drive is operating, the drive will decrease its output frequency (according to Pr.06-05) to prevent the motor stall. If the output current is lower than the setting specified in Pr.06-04, the drive will accelerate (according to Pr.06-05) again to catch up with the set frequency command value.

N 06-05 Accel./Decel. Time Selection of Stall Prevention at Constant Speed
Factory Setting: 0
Settings 0 : by current accel/decel time
1: by the 1 st accel/decel time
2 : by the 2 nd accel/decel time
3 : by the 3 rd accel/decel time
4: by the 4th accel/decel time
5: by auto accel/decel
10. It is used to set the accel./decel. time selection when stall prevention occurs at constant speed

N 06-06 Over-torque Detection Selection (OT1)
Factory Setting: 0
Settings 0: Disable
1: Over-torque detection during constant speed operation, continue to operate after detection

2: Over-torque detection during constant speed operation, stop operation after detection

3: Over-torque detection during operation, continue to operate after detection
4: Over-torque detection during operation, stop operation after detection
N06-09
Over-torque Detection Selection (OT2)
Factory Setting: 0
Settings 0: Disable
1: Over-torque detection during constant speed operation, continue to operate after detection

2: Over-torque detection during constant speed operation, stop operation after detection

3: Over-torque detection during operation, continue to operation after detection

4: Over-torque detection during operation, stop operation after detection
[1] When Pr.06-06 and Pr.06-09 are set to 1 or 3, it will display a warning message and won't have an abnormal record.
[D] When Pr.06-06 and Pr.06-09 are set to 2 or 4, it will display a warning message and will have an abnormal record.

N 06-07 Over-torque Detection Level (OT1)
Factory Setting: 120
Settings 10 to 200\% (100\%: drive's rated current)
N 06-08 Over-torque Detection Level (OT1
Factory Setting: 0.1
Settings $\quad 0.0 \sim 60.0$ seconds
06 - 10 Over-torque Detection Level (OT2)

Factory Setting: 120
Settings $\quad 10 \sim 200 \%$ (100% drive's rated current)
N 06-11 Over-torque Detection Time (OT2)
Factory Setting: 0.1
Settings $\quad 0.0 \sim 60.0$ 秒
(1) Over torque detection is determine by the following method: if the output current exceeds the over-torque detection level (Pr.06-07, factory setting: 120\%) and also exceeds Pr.06-08 Over-Torque Detection Time, the fault code "ot1/ot2" will appear. If a Multi-Functional Output Terminal is to over-torque detection (setting 7 or 8), the output is on. Please refer to Pr.02-13~02-14 for details. When the output frequency decreases and passes the over-torque detection level, there will be a 5% delay(it decreases to 95% level of $\operatorname{Pr} 06-07$). Then the over-torque detection stops.

Maximum Current Limit
Factory Setting: 150
Settings $\quad 0 \sim 200 \%$ (100% drive's rated current)
(1) This parameter sets the max. current output of the drive.

N 06-13 Electronic Thermal Relay Selection (Motor 1)
N 06-27 Electronic Thermal Relay Selection (Motor 2)
Factory Setting: 2

Settings	$0:$ Inverter motor
	1: Standard motor
	2: Disable

It is used to prevent self-cooled motor overheats under low speed. User can use electronic thermal relay to limit driver's output power.

N 06-14 Electronic Thermal Characteristic for Motor 1
N 06-28 Electronic Thermal Characteristic for Motor 2
Factory Setting: 60.0
Settings $\quad 30.0 \sim 600.0$ seconds

1 The parameter is set by the 150% of motor rated current and the setting of Pr.06-14 and Pr.06-28 to prevent the motor damaged from overheating. When it reaches the setting, it will display "EoL1/EoL2" and the motor will be in free running.

~ 06-15 Heat Sink Over-heat (OH) Warning
Factory Setting:100.0
Settings $\quad 0.0 \sim 110.0^{\circ} \mathrm{C}$

Model	OH1_Light Duty \& Normal Duty IGBT Over-heating Level $\left({ }^{\circ} \mathrm{C}\right)$	Normal Duty OH2 CAP Over-heating Level $\left({ }^{\circ} \mathrm{C}\right)$	Light Duty CAP Over-heating Level (${ }^{\circ} \mathrm{C}$)
VFD007CP23A/E	110	95	90
VFD015CP23A/E	110	100	95
VFD022CP23A/E	110	100	95
VFD037CP23A/E	110	100	95
VFD055CP23A/E	110	100	95
VFD075CP23A/E	110	80	75
VFD110CP23A/E	110	80	75
VFD150CP23A/E	110	80	75
VFD185CP23A/E	105	80	75
VFD220CP23A/E	105	80	75
VFD300CP23A/E	105	75	70
VFD370CP23A/E	105	65	55
VFD450CP23A/E	105	65	55
VFD550CP23A/E	110	65	55
VFD750CP23A/E	110	65	55
VFD900CP23A/E	110	65	55
VFD1100CP43A/E	110	65	55
VFD007CP23A/E	110	95	90
VFD015CP43B/EB	110	100	95
VFD022CP43B/EB	110	105	100
VFD037CP43B/EB	110	100	95
VFD040CP43A/E	110	105	100
VFD055CP43B/EB	110	100	95
VFD075CP43B/EB	110	100	95
VFD110CP43B/EB	105	80	75
VFD150CP43B/EB	105	80	75
VFD185CP43B/EB	105	80	75
VFD220CP43A/E	105	85	80
VFD300CP43B/EB	105	85	80
VFD370CP43B/EB	110	85	80

Chapter 12 Description of Parameter Settings

VFD450CP43A/E	105	65	55
VFD550CP43A/E	105	65	55
VFD750CP43B	105	65	55
VFD900CP43A/E	110	65	55
VFD1100CP43A/E	110	65	55
VFD1320CP43B	110	65	55
VFD1600CP43A/E	110	65	55
VFD1850CP43B	110	65	55
VFD2200CP43A/E	110	70	60
VFD2800CP43A/E	110	70	60
VFD3150CP43A/E	110	70	60
VFD3550CP43A/E	110	70	60
VFD4000CP43A/E	110	70	60

* 06-16 Stall Prevention Limit Level

Factory Setting: 50
Settings $\quad 0 \sim 100 \%$ (Refer to Pr.06-03 and 06-04)
[1] When operation frequency is larger than Pr.01-01
For example: $\operatorname{Pr} 06-03=150 \%$, $\operatorname{Pr} .06-04=100 \%$ and $\operatorname{Pr} .06-16=80 \%$:
Stall Prevention Level during acceleration $=06-03 \times 06-16=150 \times 80 \%=120 \%$.
Stall Prevention Level at constant speed $=06-04 x 06-16=100 \times 80 \%=80 \%$
1 When operation frequency is larger than Pr.01-01 (Base Frequency/Motor Rated Frequency);
e.g. $\operatorname{Pr} 06-03=150 \%$, Pr. $06-04=100 \%$ and $\operatorname{Pr} .06-16=80 \%$

Stall Prevention Level during acceleration $=06-03 \times 06-16=150 \times 80 \%=120 \%$.
Stall Prevention Level at constant speed $=06-04 \times 06-16=100 \times 80 \%=80 \%$.
06-17 Presel Faut keood
$06-18$ Second Most Recent Fault Record
$06-19$ Third Most Recent Fault Record
$06-20$ Fourth Most Recent Fault Record
$06-21$ Fifth Most Recent Fault Record
$06-22$ Sixth Most Recent Fault Record

Settings:
0 : No fault record
1: Over-current during acceleration (ocA)
2: Over-current during deceleration (ocd)
3: Over-current during constant speed(ocn)
4: Ground fault (GFF)
5: IGBT short-circuit (occ)
6: Over-current at stop (ocS)
7: Over-voltage during acceleration (ovA)
8: Over-voltage during deceleration (ovd)
9: Over-voltage during constant speed (ovn)
10: Over-voltage at stop (ovS)
11: Low-voltage during acceleration (LvA)
12: Low-voltage during deceleration (Lvd)
13: Low-voltage during constant speed (Lvn)
14: Stop mid-low voltage (LvS)
15: Phase loss protection (OrP)
16: IGBT over-heat (oH 1)
17: Capacitance over-heat (oH2) (for 40hp above)
18: tH1o (TH1 open: IGBT over-heat protection error)
19: tH2o (TH2 open: capacitance over-heat protection error)

20: Reserved
21: Drive over-load (oL)
22: Electronics thermal relay 1 (EoL1)
23: Electronics thermal relay 2 (EoL2)
24: Motor PTC overheat (oH3) (PTC)
25: Reserved
26: Over-torque 1 (ot1)
27: Over-torque 2 (ot2)

28: Under current 1 (uC)
29: Reserved
30: Memory write-in error (cF1)
31: Memory read-out error (cF2)
32: Reserved
33: U-phase current detection error (cd1)
34: V-phase current detection error (cd2)
35: W-phase current detection error (cd3)
36: Clamp current detection error (Hd0)
37: Over-current detection error (Hd1)
38: Over-voltage detection error (Hd2)
39: occ IGBT short circuit detection error (Hd3)
40: Auto tuning error (AUE)
41: PID feedback loss (AFE)
42: Reserved
43: Reserved
44: Reserved
45: Reserved
46: Reserved
47: Reserved
48: Analog current input loss (ACE)
49: External fault input (EF)
50: Emergency stop (EF1)
51: External Base Block (bb)
52: Password error (PcodE)
53: Reserved
54: Communication error (CE1)
55: Communication error (CE2)
56: Communication error (CE3)
57: Communication error (CE4)
58: Communication Time-out (CE10)
59: PU Time-out (CP10)
60: Brake transistor error (bF)
61: Y-connection/ \triangle-connection switch error (ydc)
62: Decel. Energy Backup Error (dEb)
63: Slip error (oSL)
64: Electromagnet switch error (ryF)
65 : Reserved
66~72 : Reserved
73 : External safety gate S1
74: Output in Fire Mode
75~78: Reserved

79: Uocc U phase over current (Detection begins as RUN is pressed, software protection)
80: Vocc V phase over current (Detection begins as RUN is pressed, software protection)
81: Wocc W phase over current (Detection begins as RUN is pressed, software protection)
82: OPHL U phase output phase loss
83: OPHL Vphase output phase loss
84: OPHL Wphase output phase loss
85~100 : Reserved
101: CGdE CANopen software disconnectl
102: CHbE CANopen software disconnect2
103: CSYE CANopen synchronous error
104: CbFE CANopen hardware disconnect
105: CIdE CANopen index setting error
106: CAdE CANopen slave station number setting error
107: CFrE CANopen index setting exceed limit
1 When the fault occurs and force stopping, it will record in this parameter.
(1) At stop with low voltage Lv (LvS warn, no record). During operation with mid-low voltage Lv (LvA, Lvd, Lvn error, will record).Setting 62: when dEb function is enabled, the drive will execute dEb and record to the $\operatorname{Pr} .06-17$ to Pr.06-22 simultaneously.

06 - 23 Fault Output Option 1

N 06-24 Fault Output Option 2
N 06-25 Fault Output Option 3
N 06-26 Fault Output Option 4
Factory Setting: 0
Settings 0 to 65535 sec (refer to bit table for fault code)
These parameters can be used with multi-function output (set to 35-38) for the specific requirement. When the fault occurs, the corresponding terminals will be activated (It needs to convert binary value to decimal value to fill in Pr.06-23 to Pr.06-26)

Fault Code	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
	current	Volt.	OL	SYS	FBK	EXI	CE
0: No fault							
1: Over-current during acceleration (ocA)	\bullet						
2: Over-current during deceleration (ocd)	\bullet						
3: Over-current during constant speed(ocn)	\bullet						
4: Ground fault (GFF)	\bullet						
5: IGBT short-circuit (occ)	\bullet						
6: Over-current at stop (ocS)	\bullet						

N 06-29 PTC (Positive Temperature Coefficient) Detection Selection

Settings	$0:$ Warn and keep operating
	1: Warn and ramp to stop
	2: Warn and coast to stop
	3: No warning

This is the operating mode of a drive after Pr.06-29 is set to define PTC detection.

```
06-30 PTC Level
```

Factory Setting: 50.0
Settings $\quad 0.0 \sim 100.0 \%$
[1] It needs to set AVI1/ACI/AVI2 analog input function Pr.03-00~03-02 to 6 (P.T.C. thermistor input value).
1 It is used to set the PTC level, and the corresponding value for 100% is max. analog input value.
N 06-31 Frequency Command for Malfunction
Factory Setting: Read Only
Settings $\quad 0.00 \sim 655.35 \mathrm{~Hz}$
(1) When malfunction occurs, use can check the frequency command. If it happens again, it will overwrite the previous record.
$06-32$ Output Frequency at Malfunction
Factory Setting: Read Only
Settings $\quad 0.00 \sim 655.35 \mathrm{~Hz}$
When malfunction occurs, use can check the current frequency command. If it happens again, it will overwrite the previous record.

06 - 33 Output Voltage at Malfunction
Factory Setting: Red Only
Settings $\quad 0.0 \sim 6553.5 \mathrm{~V}$
When malfunction occurs, user can check current output voltage. If it happens again, it will overwrite the previous record.
06-34 DC Voltage at Malfunction
Factory Setting: Read Only
Settings $\quad 0.0 \sim 6553.5 \mathrm{~V}$
(1) When malfunction occurs, user can check the current DC voltage. If it happens again, it will overwrite the previous record.

06 - 35 Output Current at Malfunction
Factory Setting: Read Only
Settings $\quad 0.00 \sim 655.35 \mathrm{Amp}$
When malfunction occurs, user can check the current output current. If it happens again, it will overwrite the previous record.

06-36 IGBT Temperature at Malfunction

Settings $\quad 0.0 \sim 6553.5^{\circ} \mathrm{C}$
When malfunction occurs, user can check the current IGBT temperature. If it happens again, it will overwrite the previous record.

06-37 Capacitance Temperature at Malfunction
Factory Setting: Read Only
Settings $\quad 0.0 \sim 6553.5^{\circ} \mathrm{C}$
When malfunction occurs, user can check the current capacitance temperature. If it happens again, it will overwrite the previous record.
$06-38$ Motor Speed in rpm at Malfunction
Factory Setting: Read Only
Settings $\quad 0.0 \sim 6553.5^{\circ} \mathrm{C}$
When malfunction occurs, user can check the current motor speed in rpm. If it happens again, it will overwrite the previous record

06-39 Reserved

06-40 Satus of Nultif finction Input Teminal at Malfinction
Factory Setting: Read Only
Settings $0 \sim 65535$
06 - 41 Status of Multi-function Output Terminal at Malfunction
Factory Setting: Read Only
Settings 0~65535
When malfunction occurs, user can check the status of multi-function input/output terminals. If it happens again, it will overwrite the previous record

06-42 Drive Status at Malfunction

Factory Setting: Read Only
Settings 0~65535
When malfunction occurs, please check the drive status (communication address 2119 H). If malfunction happens again, the previous record will be overwritten by this parameter.

06-43 Reserved
 06-44 Reserved

06-45 Treatment for Output Phase Loss Detection (OPHL)

Factory Setting: 3

$$
\begin{array}{ll}
\text { Settings } & 0: \text { Warn and keep operating } \\
& 1: \text { Warn and ramp to stop }
\end{array}
$$

2: Warn and coast to stop
3: No warning
©d OPHL: Output Phase Loss
06 - 46 Deceleration Time of Output Phase Loss
Factory Setting: 0.500
Settings $\quad 0.000 \sim 65.535$ seconds

06-47 Current Bandwidth
Factory Setting: 1.00
Settings $\quad 0.00 \sim 100.00 \%$
$06-48$ DC Brake Time of Output Phase Loss
Factory Setting: 0.000
Settings $\quad 0.000 \sim 65.535$ seconds
$\operatorname{Pr} 06-45 \sim \operatorname{Pr} 06-48$ are parameters of output phase loss. When the motor's current is smaller than the current bandwidth and still follows the setting of Pr06-46, this situation will be seen as output phase loss. Then an error message OPHL will be shown on the keypad.

06-49 Reserved

06 - 50 Detection Time of Input Phase Loss
Factory Setting: 0.20
Settings $\quad 0.00 \sim 600.00$ seconds
[ad This parameter is to set time to detect input phase loss. The factory setting is 0.20 second which means to check every 0.20 second.

06-51 Reserved
$06-52^{\text {Ripple of Input Phase Loss }}$
Factory Setting: 30.0 / 60.0
Settings $\quad 230 \mathrm{~V}$ models: $0.0 \sim 160.0 \mathrm{Vdc}$
460V models $0.0 \sim 320.0 \mathrm{Vdc}$

06 - 53 Treatment for the detected Input Phase Loss (OrP)
Factory Setting: 0
Settings 0: warn, ramp to stop
1: warn, coast to stop
(1) Over ripple protection.
(1) To prevent damage on overheating capacitor caused by three phase input phase loss, it is necessary to verify if the input voltage is input phase loss to protect the equipments.

When the input voltage is bigger than the setting at Pr06-52 for 30seconds, this situation is seen as input phase loss. Then an error message OrP will be shown on the keypad

06-54 Reserved

06-55 Derating Protection

Factory Setting: 0

Settings 0 : constant rated current and limit carrier wave by load current and temperature 1: constant carrier frequency and limit load current by setting carrier wave 2: constant rated current(same as setting 0), but close current limit

Setting 0: When the rated current is constant, carrier frequency (Fc) outputted by PWM will auto decrease according to surrounding temperature, overload output current and time. If overload situation is not frequent and only cares the carrier frequency operated with the rated current for a long time and carrier wave changes during short overload, it is recommended to set to 0 .
Refer to the following diagram for the level of carrier frequency. Take VFD007CP43A-21 in normal duty as example, surrounding temperature $50^{\circ} \mathrm{C}$ with independent installation and UL open-type. When the carrier frequency is set to 15 kHz , it corresponds to 72% rated output current. When it outputs higher than the value, it will auto decrease the carrier frequency. If the output is 83% rated current and the carrier frequency will decrease to 12 kHz . In addition, it will also decrease the carrier frequency when overload. When the carrier frequency is 15 kHz and the current is $120 \% * 72 \%=86 \%$ for a minute, the carrier frequency will decrease to the factory setting.

1 Setting 1: It is used for the fixed carrier frequency and prevents the carrier wave changes and motor noise caused by the surrounding temperature and frequent overload.
Refer to the following for the derating level of rated current. Take VFD007CP43A-21 in normal duty as example, when the carrier frequency keeps in 15 kHz and the rated current is decreased to 72%, it will have OL protection when the current is $120 \% * 72 \%=86 \%$ for a minute. Therefore, it needs to operate by the curve to keep the carrier frequency.

Setting 2: It sets the protection method and action to 0 and disables the current limit for the Ratio*160\% of output current in the normal duty and Ratio* 130% of output current in the light duty. The advantage is that it can provide higher output current when the setting is higher than the factory setting of carrier frequency. The disadvantage is that it decreases carrier wave easily when overload.

Derating Curve diagram while Light Duty and Normal Duty

(1) It should go with Pr. 00-16 and Pr.00-17 for setting.

\| \Rightarrow NOTE

※ (As shown in the left figure), The mounting clearances are not for installing the drive in a confined space (such as cabinet or electric box). When installing in a confined space, except the same minimum mounting clearances, it needs to have the ventilation equipment or air conditioner to keep the surrounding temperature lower than the operation temperature.
※ The following table shows heat dissipation and the required air volume when installing a single drive in a confined space. When installing multiple drives, the required air volume shall be multiplied by the number the drives.
※ Please refer to the chart "Air Flow Rate for Cooling" for ventilation equipment design and selection.
※ Please refer to the chart "Power Dissipation" for air conditioner design and selection.
※ For more detail, please refer to Chapter 2 Installation.
Minimum Mounting Distance

Frame	A (mm)	B (mm)	C (mm)	D (mm)
A \sim C	60	30	10	0
D F	100	50	-	0
G	200	100	-	0
H	350	0	0	$200\left(100, \mathrm{Ta}=40^{\circ} \mathrm{C}\right)$

Air flow rate for cooling							Power Dissipation		
Model No.	Flow Rate (cfm)			Flow Rate ($\mathrm{m}^{3} / \mathrm{hr}$)			Power Dissipation (watt)		
	External	Internal	Total	External	Internal	Total	Loss External (Heat sink)	Internal	Total
VFD007CP23A-21	-	-	-	- -	-	-	40	31	71
VFD015CP23A-21	-	-	-	- -	-	-	61	39	100
VFD022CP23A-21	14	-	14	24	-	24	81	45	126
VFD037CP23A-21	14	-	14	24	-	24	127	57	184
VFD055CP23A-21	10	-	10	17	-	17	158	93	251
VFD075CP23A-21	40	14	54	68	24	92	291	101	392
VFD110CP23A-21	66	14	80	112	24	136	403	162	565
VFD150CP23A-21	58	14	73	99	24	124	570	157	727
VFD185CP23A-21	166	12	178	282	20	302	622	218	840
VFD220CP23A-21	166	12	178	282	20	302	777	197	974
VFD300CP23A-21	146	12	158	248	20	268	878	222	1100
VFD370CP23A-00/23A-21	179	30	209	304	51	355	1271	311	1582
VFD450CP23A-00/23A-21	179	30	209	304	51	355	1550	335	1885
VFD550CP23A-00/23A-21	228	73	301	387	124	511	1762	489	2251
VFD750CP23A-00/23A-21	228	73	301	387	124	511	2020	574	2594
VFD900CP23A-00/23A-21	246	73	319	418	124	542	2442	584	3026
VFD007CP43A/4EA-21	-	-	-	- -	-	-	35	32	67

Chapter 12 Description of Parameter Settings

VFD015CP43B/4EB-21	-	-	-	-			44	31	75
Air flow rate for cooling							Power Dissipation		
Model No.	Flow Rate (cfm)			Flow Rate ($\mathrm{m}^{3} / \mathrm{hr}$)			Power Dissipation (watt)		
	External	Internal	Total	External	Internal	Total	Loss External (Heat sink)	Internal	Total
VFD037CP43A/4EA-21	14		14	24		24	92	60	152
VFD040CP43A/4EA-21	10	-	10	17	-	17	124	81	205
VFD055CP43B/4EB-21	10	-	10	17		17	135	99	234
VFD075CP43B/4EB-21	10	-	10	17		17	165	98	263
VFD110CP43B/4EB-21	40	14	54	68	24	92	275	164	439
VFD150CP43B/4EB-21	66	14	80	112	24	136	370	194	564
VFD185CP43B/4EB-21	58	14	73	99	24	124	459	192	651
VFD220CP43A/4EA-21	99	21	120	168	36	204	455	358	813
VFD300CP43B/4EB-21	99	21	120	168	36	204	609	363	972
VFD370CP43A/4EA-21	126	21	147	214	36	250	845	405	1250
$\begin{aligned} & \text { VFD450CP43S-00/43S-21 } \\ & \text { VFD450CP43A-00/43A-21 } \end{aligned}$	179	30	209	304	51	355	1056	459	1515
VFD550CP43S-00/443S-21 VFD550CP43A-00/43A-21	179	30	209	304	51	355	1163	669	1832
VFD750CP43B-00/43B-21	179	30	209	304	51	355	1639	657	2296
VFD900CP43A-00/43A-21	186	30	216	316	51	367	1787	955	2742
VFD1100CP43A-00/43A-21	257	73	330	437	124	561	2112	1084	3196
VFD1320CP43B-00/43B-21	223	73	296	379	124	503	2417	1157	3574
VFD1600CP43A-00/43A-21	224	112	336	381	190	571	3269	1235	4504
VFD1850CP43B-00/43B-21	289	112	401	491	190	681	3632	1351	4983
VFD2200CP43A-00/43A-21			454			771			6358
VFD2800CP43A-00/43A-21			454			771			7325
VFD3150CP43A-00/43C-00/43C-21			769			1307			8513
VFD3550CP43A-00/43C-00/43C-21			769			1307			9440
VFD4000CP43A-00/43C-00/43C-21			769			1307			10642
※ The required airflow shown in chart is for installing single drive in a confined space. ※ When installing the multiple drives, the required air volume should be the required air volume for single drive X the number of the drives.							※ The heat dissipation shown in the chart is for installing single drive in a confined space. ※ When installing multiple drives, volume of heat dissipation should be the heat dissipated for single drive X the number of the drives.		

	* Heat dissipation for each model is calculated by rated voltage, current and default carrier
06-56 PT100 Detection Level 1	
	Factory Setting: 5.000
Settings $0.000 \sim 10.000 \mathrm{~V}$	
06-57 PT100 Detection Level 2	
	Factory Setting: 7.000
Settings $0.000 \sim 10.000 \mathrm{~V}$	

06-58 PT100 Level 1 Frequency Protection
Factory Setting: 0.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$

06-59 PT100 Handling Delay Time
Factory Setting: 60
Settings $\quad 0 \sim 6000 \mathrm{sec}$

06-60 Software Detection GFF Current Level
Factory Setting: 60.0
Settings $\quad 0.0 \sim 6553.5 \%$

06-61 Software Detection GFF Filter Time
Factory Setting: 0.10
Settings $0.0 \sim 655.35$ seconds

06-62 Disable Level of dEb
Factory Setting: 150.0/300.0
Settings 230 V models: $0.0 \sim 200.0 \mathrm{Vdc}$ 460 V models $0.0 \sim 400.0 \mathrm{Vdc}$
The dEb will be enabled, when the voltage of DCBus is higher than the setting at Pr06-62.

06-63 Operating time of Present Fault Record(Day)
06-65 Operating time of Second Most Recent Fault Record(Day)
06-67 Operating time of Third Most Recent Fault Record(Day)
06 - 69 Operating time of Fourth Most Recent Fault Record(Day)
Factory Setting :Read only
Settings $\quad 0 \sim 65535$ Day

06-64 Operating time of Present Fault Record(Minute)
06 - 66 Operating time of Second Most Recent Fault Record(Minute)
06 - 68 Operating time of Third Most Recent Fault Record(Minute)
06 - 70 Operating time of Fourth Most Recent Fault Record(Minute)
Factory Setting :Read only
Settings $\quad 0 \sim 1439$ minute

Pr.06-63 to Pr.06-68 are used to record the operation time for 6 malfunctions and it can also check if there is any wrong with the drive according to the internal time.

11 When the malfunction occurs during operation, it records fault in $\mathrm{Pr} .06-17 \sim 06-22$ and operation time is recorded in Pr.06-63~06-68.
For example: When the first fault ovA occurs after operation 3000 min ., second fault ovd occurs at 3482 min ., third fault ovA occurs at 4051 min ., fourth fault ocA at 5003 min ., fifth fault ocA at 5824 min ., sixth fault ocd occurs at 6402 min . and seven fault ocS at 6951 min .
It'll be recorded as the following table

It will be recorded as the table below.

First Fault	Pr.06-17	ovA	Pr.06-63	3000
Second Fault	Pr. 06-17	ovd	Pr. 06-63	3482
	Pr. 06-18	ovA	Pr. 06-64	3000
Third Fault	Pr. 06-17	ovA	Pr. 06-63	4051
	Pr. 06-18	ovd	Pr. 06-64	3482
	Pr. 06-19	ovA	Pr. 06-65	3000
Seventh Fault	Pr. 06-17	ocS	Pr. 06-63	6951
	Pr 06-18	ocA	Pr 06-64	5824
	Pr 06-19	ocA	Pr 06-65	5003
	Pr 06-20	ovA	Pr 06-66	4051
	Pr 06-21	ovd	Pr 06-67	3482
	Pr 06-22	ovA	Pr 06-68	3000

06-71 Low Current Setting Level
Factory Setting: 0.0
Settings $\quad 0.0 \sim 100.0 \%$

06-72 Low Current Detecting Time
Factory Setting: 0.00
Settings $\quad 0.00 \sim 360.00$ seconds

06 - 73 Treatment for low current
Factory Setting: 0
Settings $0:$ No function
1 : warn and coast to stop
2 : warn and ramp to stop by $2^{\text {nd }}$ deceleration time
3 : warn and operation continue
06-74 Low Voltage Level 2
Factory Setting: 180.0/360.0
Settings 230 V models : $0.0 \sim 220.0 \mathrm{Vdc}$
460 V models: $0.0 \sim 440.0 \mathrm{Vdc}$

06 - 76 dEb Function Bias Level
Factory Setting: 20.0/40.0
Settings $\quad 0.00 \sim 100.0 \mathrm{~V} / 0.0 \sim 200.0 \mathrm{~V}$
06-80 Fire Mode
Factory Setting: 0.00
Settings 0: No Function
1: Forward Operation
2: Reverse Operation

This parameter needs to work with multi-input function terminal \#58 or \#59 and multi-output function terminal \#53 and \#54.

Setting is 0: Fire mode is disabled
Setting is 1: When there is a fire, motors will operate clockwisely (U, V.W).
Setting is 2: When there is a fire, motors will operate counter-clockwisely.

06-81 Operating Frequency when running Fire Mode
Factory Setting: 6000
Settings $\quad 0.00 \sim 600.00 \mathrm{hz}$
This parameter is to set up the drive's frequency when the fire mode is enabled.

06-82 Enable Bypass on Fire Mode
Factory Setting: 0 .
Settings 0: Disable Bypass
1: Enable Bypass

06-83 Bypass Delay Time on Fire Mode
Factory Setting: 0.0
Settings $\quad 0.00 \sim 6550.0$ seconds
$06-84$ Number of Times of Unusual Reset at Fire Mode
Factory Setting: 0
Settings $\quad 0 \sim 10$
06-85 Length of Time of Unusual Reset
Settings
$0.00 \sim 6000.0 \mathrm{sec}$
Factory Setting: 60.0

The settings of Pr06-82 to Pr06-85 decide if switch motors to operating under mains electricity.

Diagram of Bypass function's Sequence

When $\operatorname{Pr} 06-82$ is set to 1 and under one of two conditions below.
(1) When operating at fire mode, there is error(as shown in the table below) and the fire alarm rings according to the time setting of $\operatorname{Pr} 06-83$, then the bypass function will be enabled. MFO bypass indication will be ON.
(2) When operating at fire mode, there is an error on auto-reset and the number of time to auto-reset remains zero or the fire alarm rings according to the time setting of Pr06-83, then the bypass function will be enabled. MFO bypass indication will be ON. If the auto rest is successful before the bypass function is enabled, then the bypass delay counter will return to zero to wait for next trigger.

Table 1: Error detection under Normal mode, Fire mode and Bypass function at Fire mode. (V means detectable)

Code	Error name	Normal mode	Fire Mode	Enable bypass function
1	Over current during Acceleration (ocA)	V (RS)	V(able to auto-reset)	V
2	Over current during deceleration (ocd)	V (RS)	V(able to auto-reset)	V
3	Over current during normal speed (ocn)	V (RS)	V(able to auto-reset)	V
4	Ground Fault (GFF)	V	V(able to auto-reset)	V
5	IGBT short circuit (occ)	V (RS)	V(able to auto-reset)	V
6	Over current during Stop (ocS)	V (RS)	V(able to auto-reset)	V
7	Over voltage during Acceleration (ovA)	V (RS)	V(able to auto-reset)	V
8	Over voltage during deceleration (ovd)	V (RS)	V(able to auto-reset)	V
9	Over voltage during normal speed (ovn)	V(RS)	V(able to auto-reset)	V
10	Over voltage during Stop (ovS)	V (RS)	V(able to auto-reset)	V
11	Low voltage during Acceleration (LvA)	V	Not-detectable	Not-detectable
12	Low voltage during deceleration (Lvd)	V	Not-detectable	Not-detectable
13	Low voltage during normal speed (Lvn)	V	Not-detectable	Not-detectable
14	Low voltage during Stop (LvS)	V	Not-detectable	Not-detectable
15	Input phase loss (OrP)	V	V(able to auto-reset)	V
16	Over heat $1(\mathrm{oH1})$	V	V(able to	V

Chapter 12 Description of Parameter Settings

			auto-reset)	
17	Over heat $2(\mathrm{oH} 2)$	V	V(able to auto-reset)	V
18	Thermister 1 open (tH1o)	V	V(able to auto-reset)	V
19	Thermister 2 open (tH2o)	V	V(able to auto-reset)	V
21	Over Load (oL) (150\% 1 Min, Inverter)	V	Not-detectable	Not-detectable
22	Motor 1 over load (EoL1)	V	Not-detectable	Not-detectable
23	Motor 2 over load (EoL2)	V	Not-detectable	Not-detectable
24	Over heat 3 (oH3) (PTC)	V	V(able to auto-reset)	V
26	Over torque 1 (ot1)	V	Not-detectable	Not-detectable
27	Over torque 2 (ot2)	V	Not-detectable	Not-detectable
30	EEPROM write error (cF1)	V	Not-detectable	Not-detectable
31	EEPROM read error (cF2)	V	V	Not-detectable
33	U phase current sensor detection error (cd1)	V	V	Not-detectable
34	V phase current sensor detection error (cd2)	V	V	Not-detectable
35	W phase current sensor detection error (cd3)	V	V	Not-detectable
36	Hardware Logic error 0 (Hd0) - cc	V	V	Not-detectable
37	Hardware Logic error 1 (Hd1) - oc	V	V	Not-detectable
38	Hardware Logic error 2 (Hd2) - ov	V	V	Not-detectable
39	Hardware Logic error 3 (Hd3) - occ	V	V	Not-detectable
40	Motor auto tuning error (AuE)	V	Not-detectable	Not-detectable
41	ACI feedback loss (AFE)	V	Not-detectable	Not-detectable
48	ACI Loss	V	Not-detectable	Not-detectable
49	External fault (EF)	V	Not-detectable	Not-detectable
50	Emergency stop (EF1)	V	Not-detectable	Not-detectable
51	base block (bb)	V	Not-detectable	Not-detectable
52	PcodE (Password)	V	Not-detectable	Not-detectable
54	Communication error 1 (cE1)	V	Not-detectable	Not-detectable
55	Communication error 2 (cE2)	V	Not-detectable	Not-detectable
56	Communication error 3 (cE3)	V	Not-detectable	Not-detectable
57	Communication error 4 (cE4)	V	Not-detectable	Not-detectable
58	cE10 (Communication Time Out)	V	Not-detectable	Not-detectable
59	Communication time out (cP10)	V	Not-detectable	Not-detectable
60	Braking Transistor Fault (bf)	V	Not-detectable	Not-detectable
61	Y-Delta connected Error (ydc)	V	Not-detectable	Not-detectable
62	Decel. Energy Backup Error (dEb)	V	Not-detectable	Not-detectable
63	Over Slip Error (oSL)	V	Not-detectable	Not-detectable

Chapter 12 Description of Parameter Settings

64	MC Fault over Frame E	V	Not-detectable	Not-detectable
73	S1-Emergy STOP	V	V	Not-detectable
74	Fire Mode	V	V(keeps on operating)	V (keeps on operating)
79	A PHASE SHORT	V	V(able to auto-reset)	V
80	B PHASE SHORT	V	V(able to auto-reset)	V
81	C PHASE SHORT	V	V(able to auto-reset)	V
82	Output Phase Lose A	V	V(able to auto-reset)	V
83	Output Phase Lose B	V	V(able to auto-reset)	V
84	Output Phase Lose C	V	V(able to auto-reset)	V
101	Guarding T-out	V	Not-detectable	Not-detectable
102	Heartbeat T-out	V	Not-detectable	Not-detectable
103	SYNC T-out	V	Not-detectable	Not-detectable
104	CAN Bus Off	V	Not-detectable	Not-detectable
105	CAN Idx exceed	V	Not-detectable	Not-detectable
106	CAN Address set	V	Not-detectable	Not-detectable
107	CAN FRAM fail	V	Not-detectable	Not-detectable

07 Special Parameters

The parameter can be set during operation
N 07-00 Software Brake Level
Factory Setting: 380.0/760.0

$$
\begin{array}{ll}
\text { Settings } & 230 \mathrm{~V} \text { models }: 350.0 \sim 450.0 \mathrm{Vdc} \\
& 460 \mathrm{~V} \text { models }: 700.0 \sim 900.0 \mathrm{Vdc}
\end{array}
$$

10 This parameter sets the DC-bus voltage at which the brake chopper is activated. Users can choose the suitable brake resistor to have the best deceleration. Refer to Chapter 7 Accessories for the information of the brake resistorIt is only valid for the models below 30 kW of 460 series and 22 kW of 230 series.
N 07-01 DC Brake Current Level
Factory Setting: 0
Settings 0~100\%
This parameter sets the level of DC Brake Current output to the motor during start-up and stopping. When setting DC Brake Current, the Rated Current is regarded as 100%. It is recommended to start with a low DC Brake Current Level and then increase until proper holding torque has been attained.

N 07-02 DC Brake Time at Start-up
Factory Setting: 0.0
Settings $\quad 0.00 \sim 60.0$ seconds
1 When the drive doesn't have any output, the motor may be in the rotation status due to external force or its inertia. If the drive is used with the motor at this moment, it may cause motor damage or drive protection due to over current. This parameter can be used to output DC current before motor operation to stop the motor and get a stable start. This parameter determines the duration of the DC Brake current after a RUN command. When it is set to 0.0 , it is invalid.

* 07-03 DC Brake Time at Stop

Factory Setting: 0.00
Settings $0.0 \sim 60.0$ seconds
$\mathbb{1}$ The motor may be in the rotation status after drive stop outputting due to external force or its inertia and can't stop accurately. This parameter can output DC current to force the motor drive stop after drive stops to make sure that the motor is stop

1 This parameter determines the duration of the DC Brake current during stopping. To DC brake at stop, this function will be valid when Pr. $00-22$ is set to 0 or 2 . When setting to 0.0 , it is invalid
1 Related parameters: Pr.00-22 Stop Method, Pr.07-04 Start-point for DC Brake

N 07-04 Start-Point for DC Brake
Factory Setting: 0.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$
This parameter determines the frequency when DC Brake will begin during deceleration. When this setting is less than start frequency (Pr.01-09), the start-point for DC brake will start from the min. frequency.

(1)]

DC Brake at Start-up is used for loads that may move before the AC drive starts, such as fans and pumps. Under such circumstances, DC Brake can be used to hold the load in position before setting it in motion
ITD DC Brake at stop is used to shorten the stopping time and also to hold a stopped load in position, such as crane or cutting machine.

07-05 Voltage Increasing Percentage

Factory Setting: 100\%
Settings $\quad 0 \sim 200 \%$
^ 07-06 Restart after Momentary Power Down
Factory Setting: 0
Settings 0: Stop operation
1: Speed search for last frequency command
2: Speed search for the minimum output frequency
[1] This parameter determines the operation mode when the AC motor drive restarts from a momentary power loss.
[a] The power connected to the drive may power off momentarily due to many reasons. This function allows the drive to keep outputting after power is on again after power off and won't cause drive stops.
[1] Setting 1: Operation continues after momentary power loss, speed search starts with the Master Frequency reference value after drive output frequency and motor rotator speed is synchronous. The motor has the characteristics of big inertia and small obstruction. For example, in the equipment with big inertia wheel, it doesn't need to wait to execute operation command until wheel is complete stop after re-start to save time.Setting 2: Operation continues after momentary power loss, speed search starts with the master frequency after drive output frequency and motor rotator speed is synchronous. The motor has the characteristics of small inertia and bigger obstruction.

N 07-07 Maximum Power Loss Duration
Factory Setting: 2.0
Settings $\quad 0.1 \sim 20.0$ seconds
[0] If the duration of a power loss is less than this parameter setting, the AC motor drive will resume operation. If it exceeds the Maximum Allowable Power Loss Time, the AC motor drive output is then turned off (coast stop).

The selected operation after power loss in Pr.07-06 is only executed when the maximum allowable power
loss time is ≤ 20 seconds and the AC motor drive displays "LU".
But if the AC motor drive is powered off due to overload, even if the maximum allowable power loss time is ≤ 5 seconds, the operation mode as set in Pr.07-06 is not executed. In that case it starts up normally

Factory Setting: 0.5
Settings $0.1 \sim 5.0$ seconds
When momentary power loss is detected, the AC drive will block its output and then wait for a specified period of time (determined by Pr.07-08, called Base-Block Time) before resuming operation. This parameter should be set at a value to ensure that any residual regeneration voltage from the motor on the output has disappeared before the drive is activated again.

B.B. Search with last output frequency downward timing chart

B.B. Search with minimum output frequency upward timing chart

B.B. Search with minimum output frequency upward timing chart
~ 07-09 Current Limit for Speed Search
Factory Setting: 50
Settings 20~200\%
Following a momentary power loss, the AC motor drive will start its speed search operation only if the output current is greater than the value set by Pr.07-09.
[a] When doing speed search, the V/f curve is operated by group 1 setting. The maximum current for the optimum accel./decel. and start speed search is set by Pr.07-09.
\square The speed search level will affect the synchronous time. It will get the synchronization faster when this parameter is set to larger value. But too large value may activate overload protection
N 07-10 Treatment after Fault
Factory Setting: 0

> | Settings | $0:$ Stop operation |
| :--- | :--- |
| | 1: Speed search starts with current speed |
| | 2: Speed search starts with minimum output frequency |

10 Fault includes: bb,oc,ov,occ. To restart after oc, ov, occ, Pr.07-11 can not be set to 0
N 07-11 Auto Reset Times After Fault
Factory Setting: 0
Settings $\quad 0 \sim 10$
1 The maximum automatic rest and reboots times for the motor drive when faults (oc, ov, occ) occur is up to 10 times. When this parameter is set to 0 , there will be no reset or reboots. When auto reset and reboots are enabled, the motor drive will follow the setting at Pr07-10 to do a speed search before activate the drive.When the number of fault occur exceed Pr.07-11 and is within the duration less than Pr.07-33, the drive will refuse to re-start. Please press "RESET" key to continue the operation。

Factory Setting: 0
Settings 0: Disable
1: Speed search from maximum output frequency
2: Speed search from start-up motor frequency
3: Speed search from minimum output frequency
This parameter is used for starting and stopping a motor with a high inertia. A motor with high inertia will take 2-5 minutes or longer to stop completely. By setting this parameter, the user does not need to wait for the motor to come to a complete stop before restarting the AC motor drive. The output current is set by the Pr.07-09.

N 07-13 Decel. Time at Momentary Power Loss (dEb function)
Factory Setting: 0
Settings 0: Disable
1: 1st decel. time
2: 2 nd decel. time
3: 3rd decel. time
4: 4th decel. time
5: Current decel. time
6: Auto decel. time
(1)] This parameter is used for the decel. time selection for momentary power loss.

N 07-14 dEb Return Time
Factory Setting: 0.0
Settings $0.0 \sim 25.0$ seconds
This function allows the AC motor drive decelerates to stop after momentary power loss. When the momentary power loss occurs, this function can be used for the motor to decelerate to 0 speed with deceleration stop method. When the power is on again, motor will run again after dEb return time. (has applied on high-speed spindle)

Situation 1: Insufficient power supply due to momentary power-loss/unstable power (due to low voltage)/sudden loading.

NOTE If Pr07-14 is set to 0 , then a STOP command will be given. Besides the motor drive will not accelerate to reach the frequency before dEb even if the power is on again. If $\operatorname{Pr} 07-14$ is not set to 0 , a command of zero speed will be given and wait for the power on.

NOTE dEb active level is when DC BUS' voltage lower than:
230 V series: Lv level +20 Vdc or 460 V series: Lv level +40 Vdc

Situation 2: Unexpected power off, such as momentary power loss

NOTE

There are always several machines run at the same time in a textile factory. To prevent broken stitching when power down, these machines have to decelerate to stop. So when there is a sudden power loss, the host controller will notify the motor drive to use dEb function with deceleration time via EF.

NOTE dEb active level is when DC BUS' voltage lower than:
230 V series: Lv level +20 Vdc or 460 V series: Lv level +40 Vdc
$N 07-15$ Dwell Time at Accel.
Factory Setting: 0.00
Settings $\quad 0.00 \sim 600.00$ seconds
N 07-16 Dwell Frequency at Accel
Factory Setting: 0.00
Settings $\quad 0.00 \sim 600.00$ seconds
N 07-17 Dwell Frequency at Accel.
Factory Setting: 0.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$
N 07-18 Dwell Frequency at Decel.
Factory Setting: 0.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$
Pr.07-15 to Pr.07-18 is for heavy load to prevent OV or OC occurs.

[1 Dwell at accel./decel.

* 07-19 Fan Cooling Control

Factory Setting: 0
Settings 0: Fan always ON
1: 1 minute after the AC motor drive stops, fan will be OFF
2: When the AC motor drive runs, the fan is ON. When the AC motor drive stops, the fan is OFF
3: Fan turns ON when preliminary heat sink temperature (around $60^{\circ} \mathrm{C}$) is attained.
4: Fan always OFF
凹] This parameter is used for the fan control.
Setting 0: Fan will be ON as the drive's power is turned ON.
Setting 1:1 minute after AC motor drive stops, fan will be OFF
[10] Setting 2: AC motor drive runs and fan will be ON. AC motor drive stops and fan will be OFF.
1 Setting 3: Fan run according to IGBT and capacitance temperature. Fan will be ON when preliminary capacitance temperature is higher than $60^{\circ} \mathrm{C}$. Fan will be OFF , when capacitance temperature is lower than $40^{\circ} \mathrm{C}$.Setting 4: Fan is always OFF

07-20 Emergency Stop (EF) \& Force Stop
Factory Setting: 0
Settings 0: Coast to stop
1: Stop by $1^{\text {st }}$ deceleration time
2: Stop by $2^{\text {nd }}$ deceleration time
3: Stop by $3^{\text {rd }}$ deceleration time
4: Stop by $4^{\text {th }}$ deceleration time
5: System Deceleration
6: Automatic Deceleration
(1) Pr.07-20 determines AC motor drive stop method. When the multi-function input terminal is set to 10 or 18 and is activated, the drive will stop according to the setting in Pr.07-20.

Settings 0 : Disable

1 : Enable

When Pr.07-21 is set to 1 , the acceleration and deceleration will operate with full voltage. During constant speed operation, it will auto calculate the best voltage value by the load power for the load. This function is not suitable for the ever-changing load or near full-load during operation.When the output frequency is constant, i.e. constant operation, the output voltage will auto decrease by the load reduction. Therefore, the drive will operate with min. power, multiplication of voltage and current.

N 07-22 Energy-saving Gain
Factory Setting: 100
Settings 10~1000\%When Pr.07-21 is set to 1 , this parameter can be used to adjust the gain of energy-sAVIIng. The factory setting is 100%. If the result is not good, it can adjust by decreasing the setting. If the motor oscillates, it should increase the setting.

Factory Setting: 0
Settings 0: Enable AVR
1: Disable AVR
2: Disable AVR during deceleration
The rated voltage of the motor is usually $220 \mathrm{~V} / 200 \mathrm{VAC} 60 \mathrm{~Hz} / 50 \mathrm{~Hz}$ and the input voltage of the AC motor drive may vary between 180 V to $264 \mathrm{VAC} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$. Therefore, when the AC motor drive is used without AVR function, the output voltage will be the same as the input voltage. When the motor runs at voltages exceeding the rated voltage with $12 \%-20 \%$, its lifetime will be shorter and it can be damaged due to higher temperature, failing insulation and unstable torque output.AVR function automatically regulates the AC motor drive output voltage to the motor rated voltage. For instance, if V/f curve is set at $200 \mathrm{VAC} / 50 \mathrm{~Hz}$ and the input voltage is at 200 V to 264 VAC , then the motor Output Voltage will automatically be reduced to a maximum of $200 \mathrm{VAC} / 50 \mathrm{~Hz}$. If the input voltage is at 180 V to 200 VAC , output voltage to motor and input power will be in direct proportion.

Il Setting 0: when AVR function is enabled, the drive will calculate the output voltage by actual DC-bus voltage. The output voltage won't be changed by DC bus voltage.Setting 1: when AVR function is disabled, the drive will calculate the output voltage by DC-bus voltage. The output voltage will be changed by DC bus voltage. It may cause insufficient/over current.

Setting 2: the drive will disable the AVR during deceleration, such as operated from high speed to low speed.When the motor ramps to stop, the deceleration time is longer. When setting this parameter to 2 with auto acceleration/deceleration, the deceleration will be quicker.

N 07-24 Filter Time of Torque Compensation (V/F and SVC control mode)

Factory Setting: 0.020
Settings $0.001 \sim 10.000$ seconds
[1] When the setting is too long, the control will be stable but the control response will be delay. When the setting is too short, the response will be quickly but the control may be unstable. User can adjust the setting by the control and response situation.
$07-25$ Filter Time of Slip Compensation (V/F and SVC control mode)
Factory Setting: 0.100
Settings $0.001 \sim 10.000$ seconds
[1) It can set Pr.07-24 and 07-25 to change the response time of compensation.
[1] If Pr.07-24 and 07-25 are set to 10seconds, the response time of compensation is the slowest. But the system may be unstable when the setting is too short.

07-26 Torque Compensation Gain (V/F control mode)
Factory Setting: 0
Settings 0~10When the motor load is large, a part of drive output voltage is absorbed by the resistor of stator winding and causes insufficient voltage at motor induction and result in over output current and insufficient output torque. It can auto adjust output voltage by the load and keep the air gap magnetic fields stable to get the optimal operation.

1 In the V / F control, the voltage will be decreased in direct proportion when the frequency is decreased. It'll cause decrease torque at low speed due to small AC resistor and the same DC resistor. Therefore, Auto torque compensation function will increase the output voltage in the low frequency to get higher start torque.When Pr.07-26 is set to large, it may cause motor overflux and result in too large output current, motor overheat or triggers protection function.

N 07-27 Slip Compensation Gain (V/F and SVC control mode)
Factory Setting: 0.00
Settings $\quad 0.00 \sim 10.00$
1 The induction motor needs the constant slip to produce magnetic torque. It can be ignore in the higher motor speed, such as rated speed or $2-3 \%$ slip.In the operation with variable frequency, the slip and the synchronous frequency will be in reverse proportion to produce the same magnetic torque. That is the slip will be larger with the reduction of synchronous frequency. The motor may stop when the synchronous frequency is decreased to a specific value. Therefore, the slip serious affects the accuracy of motor speed at low speed.
1 In another situation, when the drive uses with induction motor, the slip will be increased by the increasing load. It also affects the accuracy of motor speed
(1) This parameter can be used to set compensation frequency and reduce the slip to close the synchronous speed when the motor runs in the rated current to raise the drive accuracy. When the drive output current is larger than Pr.05-05 No-load Current of Induction Motor 1 (A), the drive will compensation the frequency by this parameter
1 When the control method (Pr.00-11) is changed from V/f mode to vector mode, this parameter will auto be set to 1.00 . Otherwise, it will be set to 0.00 . Please do the compensation of slip after overload and acceleration. The compensation value should be increased from small to large gradually. That is to add the output frequency with motor rated slip X Pr.07-27 Slip Compensation Gain when the motor is rated load. If the actual speed ratio is slow than expectation, please increase the setting. Otherwise, decrease the setting.

07-28 Reserved

~ 07-29 Slip Deviation Level

Factory Setting: 1.0
Settings $0.0 \sim 10.0$ seconds
N07-31
Over Slip Treatment
Factory Setting: 0

Settings	0: Warn and keep operation
	1: Warn and ramp to stop
2: Warn and coast to stop	
3: No warning	

Pr.07-29 to Pr.07-31 are used to set allowable slip level/time and over slip treatment when the drive is running.

N 07-32 Motor Hunting Gain
Factory Setting: 1000
Settings $0 \sim 10000$
0 : Disable
Dad The motor will have current wave motion in some specific area. It can improve this situation by setting this parameter. (When it is high frequency, it can be set to 0 . When the current wave motion happens in the low frequency, please increase Pr.07-32.)

N 07-33 Recovery Time to Pr.07-11 (\# of automatic reboots after fault)
Factory Setting: 60.0
Settings $\quad 00 \sim 6000.0$ seconds
This parameter sets the time period for counting the \# of faults (ov, oc, occ) occurred. If \# of faults occurred within this time period does not exceed the setting in Pr.07-11, the counting will be cleared and start from 0 when the next reboots after fault happens. However, if the $\#$ of faults occurred within this time period have exceed the setting in Pr.07-11, user needs to press the RESET key manually.

07-36 Power Generating Slip Compensation Gain

Factory Setting: 1.00
Settings $\quad 0.00 \sim 1.00$

07-37
 $\sim 07-49^{\text {Reserved }}$

07-50 PWM Fan Speed

08 - 00 Input Terminal for PID Feedback

$$
\text { Factory Setting: } 0
$$

Settings 0: No function

1: Negative PID feedback: input from external terminal AVI1 (Pr.03-00)
4: Positive PID feedback from external terminal AVI1 (Pr.03-00)

1 Negative feedback means: + target value - feedback. It is used for the detection value will be increased by increasing the output frequency.
[1] Positive feedback means: -target value + feedback. It is used for the detection value will be decreased by increasing the output frequency.
[1] Common applications for PID control

1. Flow control: A flow sensor is used to feedback the flow data and performs accurate flow control.
2. Pressure control: A pressure sensor is used to feedback the pressure data and performs precise pressure control.
3. Air volume control: An air volume sensor is used to feedback the air volume data to have excellent air volume regulation.
4. Temperature control: A thermocouple or thermistor is used to feedback temperature data for comfortable temperature control.
5. Speed control: A speed sensor or encoder is used to feedback motor shaft speed or input another machines speed as a target value for closed loop speed control of master-slave operation.
Pr. 10.00 sets the PID set point source (target value). PID control operates with the feedback signal as set by Pr. 10.01 either $0 \sim+10 \mathrm{~V}$ voltage or $4-20 \mathrm{~mA}$ current.PID control loop :

K_{p} : Proportional gain(P) $\quad \mathrm{T}_{\mathrm{i}}$: Integral time $(\mathrm{I}) \mathrm{T}_{\mathrm{d}}$: Derivative control(D) S : Operator

Concept of PID control

1. Proportional gain (P) : the output is proportional to input. With only proportional gain control, there will always be a steady-state error.
2. Integral time (I): the controller output is proportional to the integral of the controller input. To eliminate the steady-state error, an "integral part" needs to be added to the controller. The integral time decides the relation between integral part and error. The integral part will be increased by time even if the error is small. It gradually increases the controller output to eliminate the error until it is 0 . In this way a system can be stable without steady-state error by proportional gain control and integral time control.
3. Differential control (D): the controller output is proportional to the differential of the controller input. During elimination of the error, oscillation or instability may occur. The differential control can be used to suppress these effects by acting before the error. That is, when the error is near 0 , the differential control should be 0 . Proportional gain (P) + differential control (D) can be used to improve the system state during PID adjustment.
[a] When PID control is used in a constant pressure pump feedback application:
Set the application's constant pressure value (bar) to be the set point of PID control. The pressure sensor will send the actual value as PID feedback value. After comparing the PID set point and PID feedback, there will be an error. Thus, the PID controller needs to calculate the output by using proportional gain (P), integral time (I) and differential time (D) to control the pump. It controls the drive to have different pump speed and achieves constant pressure control by using a $4-20 \mathrm{~mA}$ signal corresponding to $0-10$ bar as feedback to the drive.

4. Pr.00-04 is set to 10 (Display PID analog feedback signal value (b) (\%))
5. Pr.01-12 Acceleration Time will be set as required
6. Pr.01-13 Deceleration Time will be set as required
7. Pr. $00-21=0$ to operate from the digital keypad
8. Pr. $00-20=0$, the set point is controlled by the digital keypad
9. Pr. $08-00=1$ (Negative PID feedback from analog input)
10. ACI analog input Pr. 03-01 set to 5, PID feedback signal.
11. Pr.08-01-08-03 will be set as required
8.1 If there is no vibration in the system, increase Pr.08-01(Proportional Gain (P))
8.2 If there is no vibration in the system, reduce Pr.08-02 (Integral Time (I))

1 Refer to Pr.08-00 to 08-21 for PID parameters settings.

It is used to eliminate the system error. It is usually used to decrease the error and get the faster response speed. But if setting too large value in Pr.08-01, it may cause the system oscillation and instability.If the other two gains (I and D) are set to zero, proportional control is the only one effective.

Settings $0.00 \sim 100.00$ seconds

0.00 : Disable

1 The integral controller is used to eliminate the error during stable system. The integral control doesn't stop working until error is 0 . The integral is acted by the integral time. The smaller integral time is set, the stronger integral action will be. It is helpful to reduce overshoot and oscillation to make a stable system. At this moment, the decreasing error will be slow. The integral control is often used with other two controls to become PI controller or PID controller.
[10] This parameter is used to set the integral time of I controller. When the integral time is long, it will have small gain of I controller, the slower response and bad external control. When the integral time is short, it will have large gain of I controller, the faster response and rapid external control.When the integral time is too small, it may cause system oscillation.If the integral time is set as 0.00 , Pr. $08-02$ will be disabled.
~ 08-03 Derivative Control (D)
Factory Setting: 0.00
Settings $\quad 0.00 \sim 1.00$ seconds
The differential controller is used to show the change of system error and it is helpful to preview the change of error. So the differential controller can be used to eliminate the error to improve system state. With the suitable differential time, it can reduce overshoot and shorten adjustment time. However, the differential operation will increase the noise interference. Please note that too large differential will cause big noise interference. Besides, the differential shows the change and the output of the differential will be 0 when there is no change. Therefore, the differential control can't be used independently. It needs to be used with other two controllers to make a PD controller or PID controller.

1 This parameter can be used to set the gain of D controller to decide the response of error change. The suitable differential time can reduce the overshoot of P and I controller to decrease the oscillation and have a stable system. But too long differential time may cause system oscillationThe differential controller acts for the change of error and can't reduce the interference. It is not recommended to use this function in the serious interference.

Factory Setting: 100.0
Settings $\quad 0.0 \sim 100.0 \%$
1 This parameter defines an upper bound or limit for the integral gain (I) and therefore limits the Master Frequency. The formula is: Integral upper bound $=$ Maximum Output Frequency $(\operatorname{Pr} .01-00) \times(\operatorname{Pr} .08-04$ \%).Too large integral value will make the slow response due to sudden load change. In this way, it may cause motor stall or machine damage

* 08-05 PID Output Frequency Limit

Factory Setting: 100.0
Settings 0.0~110.0\%

1. This parameter defines the percentage of output frequency limit during the PID control. The formula is Output Frequency Limit $=$ Maximum Output Frequency $(\operatorname{Pr} .01-00)$ X Pr.08-05 \%.

* 08-06 PID Feedback Value

Factory Setting: Read Only
Settings $\quad 0.00 \sim 200.00 \%$
This parameter shows the value of feedback signal under PID control.
~ 08-07 PID Delay Time
Factory Setting: 0.0
Settings $\quad 0.0 \sim 35.0$ seconds

08-20 PID Mode Selection
Factory Setting: 0

Settings	0 : Serial connection
	1: Parallel connection

$1 \mathbb{1}$ PI Control: controlled by the P action only, and thus, the deviation cannot be eliminated entirely. To eliminate residual deviations, the $\mathrm{P}+\mathrm{I}$ control will generally be utilized. And when the PI control is utilized, it could eliminate the deviation incurred by the targeted value changes and the constant external interferences. However, if the I action is excessively powerful, it will delay the responding toward the swift variation. The P action could be used solely on the loading system that possesses the integral components.

PD Control: when deviation occurred, the system will immediately generate some operation load that is greater than the load generated single handedly by the D action to restrain the increment of the deviation. If the deviation is small, the effectiveness of the P action will be decreasing as well. The control objects include occasions with integral component loads, which are controlled by the P action only, and sometimes, if the integral component is functioning, the whole system will be vibrating. On such occasions, in order to make the P action's vibration subsiding and the system stabilizing, the PD control could be utilized. In other words, this control is good for use with loadings of no brake functions over the processes.

10 PID Control: Utilize the I action to eliminate the deviation and the D action to restrain the vibration, thereafter, combine with the P action to construct the PID control. Use of the PID method could obtain a control process with no deviations, high accuracies and a stable system.

Serial Connection

Parallel connection

* 08-08 Feedback Signal Detection Time

Factory Setting: 0.0
Settings $\quad 0.0 \sim 3600.0$ seconds
$\mathbb{1} \mathbb{d}$ This parameter is only valid when the feedback signal is ACI $4-20 \mathrm{~mA}$.
\square This parameter defines the time during which the PID feedback must be abnormal before a warning is given. It also can be modified according to the system feedback signal time.
© If this parameter is set to 0.0 , the system would not detect any abnormality signal.

08 - 09 Feedback Fault Treatment

Factory Setting: 0
Settings 0: Warn and keep operation
1: Warn and ramp to stop
2: Warn and coast to stop
3: Warn and operate at last frequency
This parameter is only valid when the feedback signal is ACI.AC motor drive acts when the feedback signals (analog PID feedback) are abnormal.

If the command frequency falls below the sleep frequency, for the specified time in Pr. 08-12, then the drive will shut off the output and wait until the command frequency rises above Pr.08-11.
^ $08-13$ Pid Deviation Level
Factory Setting: 10.0
Settings $\quad 1.0 \sim 50.0 \%$
N 08-14 PID Deviation Time
Factory Setting: 5.0
Settings $\quad 0.1 \sim 300.0$ seconds

N 08-15 Filter Time for PID Feedback
Factory Setting: 5.0
Settings $\quad 0.1 \sim 300.0$ seconds
(1) When the PID control function is normal, it should calculate within a period of time and close to the setpoint value.

DD] Refer to the PID control diagram for details. When executing PID feedback control, if |PID reference target value - detection value $\mid>$ Pr.08-13 PID Deviation Level and exceeds Pr.08-14 setting, the PID control fault occurs. The treatment will be done as Pr.08-09 setting.

N 08-16 PID Compensation Selection
Factory Setting: 0
Settings 0: Parameter setting
1: Analog input
~ 08-17 PID Offset
Factory Setting: 0
Settings $\quad-100.0 \sim+100.0 \%$

08-21 Enable PID to Change the Operation Direction
Factory Setting: 0
Settings 0: Disable change of direction
1: Enable change of direction

N 08-10 Sleep Reference Point
Factory Setting: 0.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$ or $0 \sim 200.00 \%$
N 08-11 Wake-up Reference Point
Factory Setting: 0.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$ or $0 \sim 200.00 \%$
(1) When $08-18=0$, the unit of $\operatorname{Pr} 08-10$ and $\operatorname{Pr} 08-11$ is Hz , settings $0 \sim 600.00 \mathrm{~Hz}$When $08-18=1$, the unit of $\operatorname{Pr} 08-10$ and $\operatorname{Pr} 08-11$ is percentage, settings $0 \sim 200.00 \%$
${ }^{*} 08-12$ Sleep Time
Factory Setting : 0.0
Settings $\quad 0.00 \sim 600.00$ seconds

08-18 Setting of Sleep Mode Function
Factory Setting: 0
Settings 0: Follow PID output command; 1: Follow PID feedback signal

08-19 Integral Limit during Wake-up
Factory Setting: 50.0\%
Settings 0~200.0\%
This upper integral limit of the motor drive is to avoid running at high speed right after being waken up.

08-22 Wake-up Delay Time Factory Setting: 0
Settings $\quad 0 \sim 600.00 \mathrm{sec}$

There are three types of Sleep mode and Wakeup mode.

01: Frequency Command (Not using PID, $\operatorname{Pr08-00=0)}$
When the Frequency Command < Sleep Frequency, the output frequency will remain at the sleep frequency.
Once reaches the setting of Pr08-12 Sleep Time, the motor drive will go to sleep at 0Hz.

Sleep Mode diagram

02: Internal PID Frequency Calculation Command (Using PID, $\operatorname{Pr08} \neq 0$)

Once reaching the sleep frequency, the system starts to calculate the sleep time and the output frequency starts to decrease immediately with desired deceleration ($\operatorname{Pr01-13\text {).Ifpassingthepresetsleeptimeduring}}$ deceleration, the frequency will continue to decrease until 0 and the motor drive will go to sleep at 0 Hz .

If not yet reaching the preset sleep time during deceleration (if there is a preset), the motor drive will remain at the lower frequency (Pr01-11) or will stay at Pr01-07 Minimum Output Frequency. Then the motor drive waits to reach the sleep time then go to sleep at 0 Hz .

03: Percentage of PID's Target Value (Set PID, Pr08-00 $\neq 0$)

Once reaching the percentage of PID's target value and the percentage of the feedback value, the motor drive
starts to calculate the sleep time. The output frequency decreases immediately with desired deceleration (Pr01-13). If the motor drive passes the preset sleep time, it will go to sleep at 0Hz. However, if it doesn't reach the preset sleep time during deceleration, it will remain at lower frequency (if there is a preset (Pr01-11)) or Pr01-07 Minimum Output Frequency. Then the motor drive waits to reach the sleep time and go to sleep at 0 Hz

Example01 - Negative PID Feedback

Example02 - Positive PID Feedback

※ $\operatorname{Pr} 08-10$ must be bigger than the $\operatorname{Pr} 08-11$.
※ 30 kg is the set point.
Set the following parameters:
$\operatorname{Pr} 03-00=5$ (AVI1 as feedback signal);
$\operatorname{Pr} 08-00=1$ (Negative PID feedback: input from external terminal AVI1 of Pr03-00);
$\operatorname{Pr} 08-10=40 \%$ (Sleep reference $12 \mathrm{~kg}=40 \% * 30 \mathrm{~kg}$);
$\operatorname{Pr} 08-11=20 \%$ (Wake-up reference $6 \mathrm{~kg}=20 \% * 30 \mathrm{~kg}$);
Case01: If feedback $>12 \mathrm{~kg}$, frequency decreases.

Zone	PID Physical Quantity
Sleep zone	When larger than 12 kg, the motor drive goes to sleep.
Transition Zone	When between $6 \mathrm{~kg} \sim 12 \mathrm{~kg}$, the motor drive remains the same status.
Wake-up zone	When smaller than 6 kg, the motor drive wakes up.

Case02: If feedback $<6 \mathrm{~kg}$, frequency increases.

※ $\operatorname{Pr} 08-10$ must be smaller than the $\operatorname{Pr} 08-11$.
※ 30 kg is the setpoint
Set the following parameters:
$\operatorname{Pr} 03-00=5$ (AVI1 as feedback signal);
$\operatorname{Pr} 08-00=4$ (Positive PID feedback from external terminal AVI1 of Pr03-00);
$\operatorname{Pr} 08-10=110 \%$ (Sleep reference: $33 \mathrm{~kg}=110 \% * 30 \mathrm{~kg}$)
$\operatorname{Pr} 08-11=120 \%$ (Wake-up reference: $36 \mathrm{Kg}=120 \% * 30 \mathrm{~kg}$)
Case01: If feedback $<33 \mathrm{~kg}$, frequency decreases

Zone	PID Physical Quantity
Sleep zone	When larger than 36 kg, the motor drive goes to sleep.
Transition Zone	When between 33 kg and 36 kg, the motor drive remains the same status.
Wake-up zone	When smaller than 33 kg, The 30 kg is the setpoint.

Case02: feedback $>36 \mathrm{~kg}$, frequency increases

09 Communication Parameters

The parameter can be set during the operation.

N 09-00 COM1 Communication Address
Factory Setting: 1
Settings 1~254
If the AC motor drive is controlled by RS-485 serial communication, the communication address for this drive must be set via this parameter. And the communication address for each AC motor drive must be different and unique

N 09-01 COM1 Transmission Speed
Factory Setting: 9.6
Settings 4.8~115.2kbps
This parameter is used to set the transmission speed between the RS485 master (PLC, PC, etc.) and AC motor drive.

N 09-02 COM1 Transmission Fault Treatment
Factory Setting: 3
Settings 0: Warn and keep operation
1: Warn and ramp to stop
2: Warn and coast to stop
3: No warning and continue operation
[1] This parameter is set to how to react if transmission errors occur
N 09-03 COM1 Time-out Detection
Factory Setting: 0.0
Settings $0.0 \sim 100.0$ seconds
0.0 : Disable
$\mathbb{1} \mathbb{1}$ It is used to set the transmission time between communication and keypad.
^ 09-04 COM1 Communication Protocol
Factory Setting: 1

$$
\begin{array}{ll}
\text { Settings } & 0: 7, \mathrm{~N}, 1 \text { for ASCII } \\
& 1: 7, \mathrm{~N}, 2 \text { for ASCII } \\
& 2: 7, \mathrm{E}, 1 \text { for ASCII } \\
& 3: 7, \mathrm{O}, 1 \text { for ASCII } \\
& 4: 7, \mathrm{E}, 2 \text { for ASCII } \\
& 5: 7, \mathrm{O}, 2 \text { for ASCII } \\
& 6: 8, \mathrm{~N}, 1 \text { for ASCII } \\
& 7: 8, \mathrm{~N}, 2 \text { for ASCII }
\end{array}
$$

8:8, E, 1 for ASCII
9: 8, O, 1 for ASCII
$10: 8, \mathrm{E}, 2$ for ASCII
$11: 8, \mathrm{O}, 2$ for ASCII
$12: 8, N, 1$ for RTU
$13: 8, N, 2$ for RTU
$14: 8, \mathrm{E}, 1$ for RTU
$15: 8, \mathrm{O}, 1$ for RTU
16: 8, E, 2 for RTU
$17: 8, \mathrm{O}, 2$ for RTU
(1) Computer Link Control by PC or PLC (Computer Link)
[1] A VFD-CP2000 can be set up to communicate on Modbus networks using one of the following modes: ASCII (American Standard Code for Information Interchange) or RTU (Remote Terminal Unit).Users can select the desired mode along with the RS-485 serial port communication protocol in Pr.09-00.
[1] MODBUS ASCII (American Standard Code for Information Interchange) : Each byte data is the combination of two ASCII characters. For example, a 1-byte data: 64 Hex, shown as ' 64 ' in ASCII, consists of ' 6 ' (36Hex) and ' 4 ' (34Hex).

1. Code Description

Communication protocol is in hexadecimal, ASCII: "0", "9", "A", "F", every 16 hexadecimal represents ASCII code. For example:

Character	'0'	'1'	'2'	'3'	'4'	'5,	'6'	'7'
ASCII code	30 H	31H	32H	33H	34H	35H	36H	37H
Character	'8'	'9'	'A'	'B'	'C'	'D'	'E'	'F'
ASCII code	38H	39H	41H	42H	43H	44H	45H	46H

Data Format

10-bit character frame (For ASCll)
(Data Format $7, N, 2$)

(Data Format 7, E, 1)

(Data Format 7, O, 1)

11-bit character frame (For RTU)
(Data Format $8, \mathrm{~N}, 2$)

(Data Format $8, \mathrm{E}, 1$)

(Data Format 8, O, 1)

2. Communication Protocol

Communication Data Frame
ASCII mode :

STX	Start character = ' ${ }^{\prime}$ (3 AH)
Address Hi	Communication Address 8-bit address consists of 2 ASCll codes
Address Lo	
Function Hi	Command code: 8 -bit command consists of 2 ASCII codes
Function Lo	
DATA (n-1)	Contents of data: Nx8-bit data consist of 2 n ASCII codes $\mathrm{n}<=16$, maximum of 32 ASCII codes
.......	
DATA 0	
LRC CHK Hi	LRC check sum: 8-bit check sum consists of 2 ASCII codes
LRC CHK Lo	
END Hi	End characters:$\mathrm{END} 1=\mathrm{CR}(0 \mathrm{DH}), \mathrm{END} 0=\mathrm{LF}(0 \mathrm{AH})$
END Lo	
RTU mode :	
START	A silent interval of more than 10 ms
Address	Communication address: 8-bit address
Function	Command code: 8-bit command
DATA (n-1)	Contents of data: $\mathrm{n} \times 8$-bit data, $\mathrm{n}<=16$
\ldots	
DATA 0	
CRC CHK Low	CRC check sum: 16-bit check sum consists of 28 -bit characters
CRC CHK High	
END	A silent interval of more than 10 ms

Address (Communication Address)

Valid communication addresses are in the range of 0 to 254 . A communication address equal to 0 , means broadcast to all AC drives (AMD). In this case, the AMD will not reply any message to the master device.
00 H : broadcast to all AC drives
01 H : AC drive of address 01
0 FH : AC drive of address 15
10 H : AC drive of address 16
FEH: AC drive of address 254

Function (Function code) and DATA (data characters)

The format of data characters depends on the function code.
03 H : read data from register
06 H : write single register

Example: reading continuous 2 data from register address 2102 H , AMD address is 01 H .
ASCII mode:

Command Message:		Response Message	
STX	$\cdot: '$	STX	' : '
Address	'0'	Address	'0'
	'1'		${ }^{1} 1$
Function	'0'	Function	${ }^{\prime} 0$
	'3'		'3'
Starting address	'2'	Number of data (count by byte)	'0'
	'1'		'4'
	'0'	Content of starting address 2102 H	'1'
	'2'		'7'
Number of data (count by word)	'0'		${ }^{6} 7$
	${ }^{6} 0$		${ }^{\prime} 0$
	${ }^{6} 0$	Content of address 2103H	${ }^{\prime} 0$
	'2'		${ }^{\prime} 0$ '
LRC Check	'D'		${ }^{\prime} 0$
	${ }^{\prime} 7$		${ }^{0} 0$
END	CR	LRC Check	${ }^{7} 7$
	LF		'1'
		END	CR
			LF

RTU mode :

Command Message:	
Address	01 H
Function	03 H
Starting data address	21 H
	02 H
Number of data	
(count by world)	00 H
CRC CHK Low	02 H
CRC CHK High	6 FH

Response Message	
Address	01 H
Function	03 H
Number of data (count by byte)	04 H
Content of data address 2102H	17 H
Content of data address 2103H	70 H
CRC CHK Low	00 H
CRC CHK High	00 H

06 H : single write, write single data to register.
Example: writing data $6000(1770 \mathrm{H})$ to register 0100 H . AMD address is 01 H 。
ASCII mode :

Command Message:	
STX	' ${ }^{\prime}$
Address	'0'
	'1'
Function	'0'
	'6'
Data address	'0'
	'1'
	${ }^{\prime} 0$
	${ }^{\prime} 0$
Data content	'1'
	'7'
	${ }^{7} 7$

Response Message	
STX	' ${ }^{\prime}$
Address	'0'
	'1'
Function	'0'
	'6'
Data address	'0'
	'1'
	'0'
	'0'
Data content	'1'
	${ }^{7} 7$
	'7'

Chapter 12 Description of Parameter Settings

	$‘ 0$
LRC Check	${ }^{\prime} 7 \prime$
1	
END	CR
	LF

	$‘ 0^{\prime}$
LRC Check	${ }^{\prime} 7^{\prime}$
${ }^{\prime} 1^{\prime}$	
END	CR
	LF

RTU mode :

Command Message:		Response Message	
Address	01H	Address	01H
Function	06H	Function	06H
Data address	01H	Data address	01H
Data address	00H		00H
	17H		17H
Data content	70 H	Data content	70 H
CRC CHK Low	86H	CRC CHK Low	86H
CRC CHK High	22H	CRC CHK High	22H

10 H : write multiple registers (write multiple data to registers)
Example: Set the multi-step speed,
Pr. $04-00=50.00(1388 \mathrm{H})$, $\operatorname{Pr} .04-01=40.00(0 \mathrm{FA} 0 \mathrm{H})$. AC drive address is 01 H .
ASCII Mode

ASCII mode :

Command Message:		Response Message	
STX	$\because ’$	STX	'
ADR 1	'0'	ADR 1	'0'
ADR 0	'1'	ADR 0	'1'
CMD 1	'1'	CMD 1	'1'
CMD 0	'0'	CMD 0	'0'
Starting data address	'0'	Starting data address	'0'
	${ }^{5}$ '		'5'
	${ }^{0} 0$		${ }^{0} 0$
	${ }^{0} 0$ '		${ }^{0} 0$
Number of data (count by word)	' 0 '	Number of data (count by word)	${ }^{0} 0$
	${ }^{0} 0$		${ }^{\prime} 0$ '
	'0'		'0'
	'2'		'2'
Number of data (count by byte)	'0'	LRC Check	'E'
	'4'		'8'
The first data content	'1'	END	CR
	${ }^{3}$		LF
	'8'		
	'8'		
The second data content	'0'		
	'F'		
	' A^{\prime}		
	'0'		
LRC Check	'9'		
	'A'		
END	CR		
	LF		

RTU Mode :

Command Message:		Response Message	
ADR	01H	ADR	01H
CMD	10H	CMD 1	10H
Starting data address	05H	Starting data address	05H
	00H		00H
Number of data (count by word)	00H	Number of data (count by word)	00H
	02H		02H
Number of data (count by byte)	04	CRC Check Low	41H
The first data content	13H	CRC Check High	04H
	88H		
The second data content	0FH		
	A0H		
CRC Check Low	'9'		
CRC Check High	'A'		

Check sum

ASCII mode:

LRC (Longitudinal Redundancy Check) is calculated by summing up, module 256, and the values of the bytes from ADR1 to last data character then calculating the hexadecimal representation of the 2's-complement negation of the sum.
For example,
$01 \mathrm{H}+03 \mathrm{H}+21 \mathrm{H}+02 \mathrm{H}+00 \mathrm{H}+02 \mathrm{H}=29 \mathrm{H}$, the 2 's-complement negation +1 of 29 H is $\underline{\mathbf{D} 7} \mathrm{H}$.

RTU mode:

CRC (Cyclical Redundancy Check) is calculated by the following steps:
Step 1: Load a 16-bit register (called CRC register) with FFFFH.
Step 2: Exclusive OR the first 8-bit byte of the command message with the low order byte of the 16-bit CRC register, putting the result in the CRC register.
Step 3: Examine the LSB of CRC register.
Step 4: If the LSB of CRC register is 0 , shift the CRC register one bit to the right with MSB zero filling, then repeat step 3. If the LSB of CRC register is 1 , shift the CRC register one bit to the right with MSB zero filling, Exclusive OR the CRC register with the polynomial value A 001 H , then repeat step 3.
Step 5: Repeat step 3 and 4 until eight shifts have been performed. When this is done, a complete 8 -bit byte will have been processed.
Step 6: Repeat step 2 to 5 for the next 8-bit byte of the command message. Continue doing this until all bytes have been processed. The final contents of the CRC register are the CRC value. When transmitting the CRC value in the message, the upper and lower bytes of the CRC value must be swapped, i.e. the lower order byte will be transmitted first.

The following is an example of CRC generation using C language. The function takes two arguments:
Unsigned char* data \leftarrow a pointer to the message buffer
Unsigned char length \leftarrow the quantity of bytes in the message buffer
The function returns the CRC value as a type of unsigned integer.
Unsigned int crc_chk(unsigned char* data, unsigned char length)
\{
int j;
unsigned int reg_crc=0Xffff;
while(length--) $\{$
reg_crc ${ }^{\wedge}=*$ data $++;$
for $(j=0 ; j<8 ; j++)\{$
if $($ reg_crc $\& 0 x 01)\{\quad / * \operatorname{LSB}(b 0)=1 * /$
reg_crc $=(\text { reg_crc } \gg 1)^{\wedge} 0 \mathrm{Xa} 001$;
\}else\{
reg_crc $=$ reg_crc $\gg 1$;
\}
\}
\}
return reg_crc; // return register CRC
3. Address list

Content	Address	Function	
AC drive Parameters	GGnnH	GG means parameter group, nn means parameter number, for example, the address of $\operatorname{Pr} 4-01$ is 0401 H .	
Command Write only	2000H	Bit0~3	0 : No function
			1: Stop
			2: Run
			3: Jog + Run
		Bit4~5	00B: No function
			01B: FWD
			10B: REV
			11B: Change direction
		Bit6~7	00B: 1st accel/decel
			01B: 2nd accel/decel
			10B: 3rd accel/decel
			11B: 4th accel/decel
		Bit08~11	0000B: master speed
			0001B: 1st accel/decel.
			0010B: 2nd accel/decel
			0011B: 3rd accel/decel
			0100B: 4th accel/decel
			0101B: 5th accel/decel
			0110B: 6th accel/decel
			0111B: 7th accel/decel
			1000B: 8th accel/decel
			1001B: 9th accel/decel
			1010B: 10th accel/decel

2204 H	Display output voltage of U, V, W (E)
2205 H	Display output power angle of U, V, W (n)
2206 H	Display actual motor speed kW of U, V, W (P)
2207 H	Display motor speed in rpm estimated by the drive or encoder feedback (r00: positive speed, -00: negative speed)
2208 H	Display positive/negative output torque N-m estimated by the drive (t0.0: positive torque, -0.0: negative torque)
2209 H	Reserved
220 AH	Display PID feedback value after enabling PID function in \% (b)
220 BH	Display signal of AVI1 analog input terminal, 0-10V corresponds to 0-100\% (1.) (as NOTE 2)
220 CH	Display signal of ACI analog input terminal, 4-V20mA/0-10V corresponds to 0-100\% (2.) (as NOTE 2)
220 DH	Display signal of AVI2 analog input terminal, 0V~10V corresponds to -100~100\% (3.) (as NOTE 2)
220 EH	Display the IGBT temperature of drive power module in ${ }^{\circ} \mathrm{C}$ (c.)
220 FH	Display the temperature of capacitance in ${ }^{\circ} \mathrm{C}$ (i.)
2210 H	The status of digital input (ON/OFF), refer to Pr.02-12.
2211 H	The status of digital output (ON/OFF), refer to Pr.02-18.
2212 H	Display the multi-step speed that is executing (S)
2213 H	The corresponding CPU pin status of digital input (d.) (as NOTE 3)
2214 H	The corresponding CPU pin status of digital output (O.) (as NOTE 4)
	42
2215 H	Reserved
2216 H	Reserved
2217 H	Reserved
2218 H	Reserved
2219 H	Display times of counter overload (0.)
221 AH	Display GFF in \% (G.)
221 BH	Reserved
221 CH	Display PLC register D1043 data (C)
221 FH	Reserved
	User page displays the value in physical measure
	Output Value of Pr.00-05

4. Exception response:

The AC motor drive is expected to return a normal response after receiving command messages from the master device. The following depicts the conditions when no normal response is replied to the master device.
The AC motor drive does not receive the messages due to a communication error; thus, the AC motor drive has no response. The master device will eventually process a timeout condition.
The AC motor drive receives the messages without a communication error, but cannot handle them. An exception response will be returned to the master device and an error message "CExx" will be displayed on the keypad of AC motor drive. The $x x$ of "CExx" is a decimal code equal to the exception code that is described below.
In the exception response, the most significant bit of the original command code is set to 1 , and an exception code which explains the condition that caused the exception is returned.

For example :
ASCII mode :

STX	' $’$	Address	01H
Address	'0'	Function	86H
	'1'	Exception code	02H
Function	'8'	CRC CHK Low	C3H
	'6'	CRC CHK High	A1H
Exception code	' 0 '		
	${ }^{2}$		
LRC CHK	'7		
	'7'		
END	CR		
	LF		

The explanation of exception codes:

Exception code	Explanation
1	Illegal data value: The data value received in the command message is not available for the AC drive.
2	Illegal data address: The data address received in the command message is not available for the AC motor drive.
3	Parameters are locked: parameters can't be changed
4	Parameters can't be changed during operation
10	Communication time-out.

~ 09 - 05
Reserved ~09-08

N 09-09 Response Delay Time
Factory Setting: 2.0
Settings $0.0 \sim 200.0 \mathrm{~ms}$
[10] This parameter is the response delay time after AC drive receives communication command as shown in the following.

N 09-10 Main Frequency of the Communication
Factory Setting: 60.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$
When Pr.00-20 is set to 1 (RS485 communication). The AC motor drive will save the last frequency command into Pr.09-10 when abnormal turn-off or momentary power loss. After reboots the power, it will regards the frequency set in $\mathrm{Pr} .09-10$ if no new frequency command is inputted

N 09-11 Block Transfer 1
N 09-12 Block Transfer 2
N 09-13 Block Transfer 3
N 09-14 Block Transfer 4
N 09-15 Block Transfer 5
N 09-16 Block Transfer 6

* 09-17 Block Transfer 7

N 09-18 Block Transfer 8
N 09-19 Block Transfer 9
N 09-20 Block Transfer 10
N 09-21 Block Transfer 11
N 09-22 Block Transfer 12
N 09-23 Block Transfer 13
N 09-24 Block Transfer 14
N 09-25 Block Transfer 15
N 09-26 Block Transfer 16
Factory Setting: 0
Settings 0~65535
There is a group of block transfer parameter available in the AC motor drive (Pr.09-11 to Pr.09-20). User can use them (Pr.09-11 to Pr.09-20) to save those parameters that you want to read.

09-27

Reserved

~09-29

Factory Setting: 1
Settings 0 : Decoding Method 1
1 : Decoding Method 2

		Decoding Method 1	Decoding Method 2
Source of Operation Control	Digital Keypd	Digital keypad controls the drive action regardless decoding method 1 or 2.	
	External Terminal	External terminal controls the drive action regardless decoding method 1 or 2.	
	RS-485	Refer to address: 2000h~20FFh	Refer to address: 6000h ~ 60FFh
	CANopen	Refer to index: 2020-01h~2020-FFh	Refer to index:2060-01h ~ 2060-FFh
	Communication Card	Refer to address: 2000h ~ 20FFh	Refer to address: $6000 \mathrm{~h} \sim 60 \mathrm{FFh}$
	PLC	PLC commands the drive action regardless decoding method 1 or 2.	

09-31 Internal Communication Protocol
Factory Setting: 0
Settings 0: Modbus 485
-1: Internal Communication Slave 1
-2: Internal Communication Slave 2
-3: Internal Communication Slave 3
-4: Internal Communication Slave 4
-5: Internal Communication Slave 5
-6: Internal Communication Slave 6
-7: Internal Communication Slave 7
-8: Internal Communication Slave 8
-9: Reserve
-10: Internal Communication Master
-11: Reserve
-12: Internal PLC Control
[a] When it is defined as internal communication, see Page17-10 for information on Main Control Terminal of Internal Communication.
1 When it is defined as internal PLC control, see Page17-11 for Remote IO control application (by using MODRW)

09-35 PLC address

Factory Setting: 2
Settings 1~254

09-36 CANopen Slave Address
Factory Setting: 0
Settings 0: Disable

$$
\begin{array}{ll}
\text { 09-37 CANopen Speed } & \\
& \\
\text { Settings } & 0: 1 \mathrm{M} \\
& 1: 500 \mathrm{k} \\
& 2: 250 \mathrm{k} \\
& 3: 125 \mathrm{k} \\
& 4: 100 \mathrm{k} \text { (Data only) } \\
& 5: 50 \mathrm{k}
\end{array}
$$

09-38 Reserved

09-39 CANopen Warning Record
Factory Setting: 0
Settings bit 0 : CANopen Guarding Time out
bit 1 : CANopen Heartbeat Time out
bit 2 : CANopen SYNC Time out
bit 3 : CANopen SDO Time out
bit 4 : CANopen SDO buffer overflow
bit 5 : Can Bus Off
bit 6 : Error protocol of CANOPEN
bit 8 : The setting values of CANopen index fail.
bit 9 : The setting value of CANopen address fails.
bit10: The checksum value of CANopen index fails

09-40 CANopen Decoding Method
Factory Setting: 1
Settings 0 : Delta defined decoding method
1 : CANopen Standard DS402 protocol
09-41 CANopen Status
Factory Setting: Read Only
Settings 0: Node Reset State
1: Com Reset State
2: Boot up State
3: Pre Operation State
4: Operation State
5: Stop State
09-42 CANopen Control Status

Settings 0: Not ready for use state
1: Inhibit start state
2: Ready to switch on state
3: Switched on state
4: Enable operation state
7: Quick stop active state
13: Error reaction activation state
14: Error state

09 - 43 Reset CANopen Index
Factory Setting: 65535
Settings bit0: reset address 20XX to 0
bit1: reset address 264X to 0
bit2: reset address 26AX to 0
bit3: reset address 60XX to 0
09-44 Reserved
09-45 CANopen Master Function
Factory Setting: 0
Settings 0: Disable
1: Enable

09-46 CANopen Master Address
Factory Setting: 100
Settings $\quad 1 \sim 127$
09-47~
09-49
Reserved

09-50 BACnet MAC ID
Factory Setting: 10
Settings $0 \sim 127$

09-51 BACnet Baud Rate
Factory Setting: 38.4
Settings $\quad 9.6 \sim 76.8 \mathrm{kbps}$

09-52 BACnet Device ID L
Factory Setting: 1
Settings 0~65535
$\begin{array}{cc}09-53 & \text { BACnet Device ID H } \\ \text { Settings } \quad 0 \sim 63 & \text { Factory Setting: } 0\end{array}$

09-55 BACnet Polling Address
Factory Setting: 127
Settings $0 \sim 127$

09-56 BACnet Password
Factory Setting: 0
Settings 0~65535

09 - 60 Identifications for Communication Card
Factory Setting: Read Only
Settings 0 : No Communication Card
1 : DeviceNet Slave
2 : Profibus-DP Slave
3: CANopen Slave/Master
4 : Modbus-TCP Slave
5 : EtherNet/IP Slave
6~8: Reserved

09-61 Firmware Version of Communication Card
Factory Setting: \#\#
Settings Read Only

09 - 62 Product Code
Factory Setting: \#\#
Settings Read Only

09-63 Error Code
Factory Setting: \#\#
Settings Read Only

09-64
-09-69
Reserved

09-70 Address of Communication Card
Factory Setting: \#\#
Settings DeviceNet: 0-63
Profibus-DP: 1-125

09-71 Setting of DeviceNet Speed(according to Pr.09-72
Factory Setting: 2
Settings \quad Standard DeviceNet:
0: 100 Kbps
1: 125 Kbps
2: 250 Kbps
3: 1 Mbps (Delta only)
Non standard DeviceNet: (Delta only)
0: 10 Kbps
1: 20 Kbps
2: 50 Kbps
3: 100 Kbps
4: 125 Kbps
5: 250 Kbps
6: 500 Kbps
7: 800 Kbps
8: 1 Mbps

09-72 Other setting of Device net Speed
Factory Setting: 1
Settings 0 : Disable
1 : Enable
This parameter needs to co-work with Pr09-71.Setting 0 : the baud rate can only be set to $0,1,2$ or 3 .Setting 1 : setting of DeviceNet baud rate can be the same as CANopen (setting 0-8
09-73 Reserved
09-74 Reserved
09 - 75 IP Configuration of the Communication Card
Factory Setting: 0
Settings $0:$ Static IP
1 : Dynamic IP (DHCP)

Setting 0: it needs to set IP address manually.
Setting 1: IP address will be auto set by host controller
09 - 76 IP Address 1 of the Communication Card
09 - 77 IP Address 2 of the Communication Card
09 - 78 IP Address 3 of the Communication Card
09 - 79 IP Address 4 of the Communication Card
Factory Setting: 0
Settings $0 \sim 255$
09-80 Address Mask 1 of the Communication Card
09-81 Address Mask 2 of the Communication Card
09-82 Address Mask 3 of the Communication Card
09-83 Address Mask 4 of the Communication Card
Factory Setting: 0
Settings $0 \sim 255$
09-84 Gateway Address 1 of the Communication Card
09-85 Gateway Address 2 of the Communication Card
09-86 Gateway Address 3 of the Communication Card
09-87 Gateway Address 4 of the Communication Card
Factory Setting: 0
Settings 0~255

09-88 Password for Communication Card (Low word)
09 - 89 Password for Communication Card (High word)
Factory Setting: 0
Settings $0 \sim 99$

09-90 Reset Communication Card
Factory Setting: 0
Settings 0 : Disable
1 : Reset to the factory setting

09-91 Additional Setting for Communication Card
Factory Setting: 1
Settings Bit 0: Enable IP Filter
Bit 1: Internet parameters enable(1bit)
Enable to write internet parameters (1bit). This bit will change to disable when it finishes sAVIIng the update of internet parameters.
Bit 2: Login password enable(1bit)
Enable login password (1bit). This bit will be changed to disable when it finishes sAVIIng the update of internet parameters.

09-92 Status of Communication Card
Factory Setting: 0
Settings Bit 0: password enable
When the communication card is set with password, this bit is enabled. When the password is clear, this bit is disabled.

12 Pump Parameter

The parameter can be set during operation.

12-00 Circulative Control

Factory Setting: 0

Settings	0: No operation
	1: Fixed Time Circulation (by time)
2: Fixed Quantity	
	3: Fixed quantity control
	4: Fixed Time Circulation + Fixed Quantity Circulation
	5: Fixed Time Circulation + Fixed Quantity Control

In this mode, CP2000 can control up to 8 motors at a time. The total number of the motors can be determined by Pr.12-01. In accordance with the Fixed Time Circulation of Pr12-02, you can adjust the switching time between Start/Stop of each motor. That means when an operating motor reaches the time setting of Pr12-02, CP2000 will stop that motor. Then after the delay time setting of Pr12-03, next motor will start operating. See diagram below.

Diagram 12-1: Sequential Diagram of the Fixed Time Circulation (by time)

D】 Disable Motors' Output

Set the Multifunction Input Commands as Disable Motors' Output can stop corresponding motors. The settings are:

P02-01~P02-06=	60	61	62	63	64	65	66	67	68
Disable Motors' Output	ALL	1	2	3	4	5	6	7	8

When a motor's output is disabled, this motor will park freely.

Wiring: Fixed Time Circulation (by time) Control can control up to 8 motors. The diagram 12-2 is an example of controlling 4 motors at the same time.

Diagram 12-2: Wiring

12-01 Number of Motors to be connected
Factory Setting: 1
$\underline{\text { Settings } \quad 1 \text { to } 8}$
(D)

Number of Motors: Maximum 8 motors. After setting number of motor to be connected at the same time, multi-function output terminals will follow automatically the setting as shown in the table below.

P12-01	01	02	03	04	05	06	07	08
P02-13	55	55	55	55	55	55	55	55
P02-14		56	56	56	56	56	56	56
P02-15			57	57	57	57	57	57
P02-36				58	58	58	58	58
P02-37					59	59	59	59
P02-38						60	60	60
P02-39							61	61
P02-40								62

Table 1: Setting of Multi-function Output Terminal on Circulating Motors

12-02 Operating time of each motor (minutes)
Factory Setting: 0
Settings 0 to 65500 minutes
[1] Setting of Fixed Time Circulation by minute. If $\operatorname{Pr} 12-02=0$, that means stop timing, the current running motors will keep on operating until a stop command is given.

12-03 Delay Time due to the Acceleration (or the Increment) at Motor Switching (seconds)
Factory Setting: 10
Settings 0.0 to 3600.0 seconds
Delay time when switching motors in seconds. When the current running motors reach the time setting of Pr12-02, CP2000 will follow the delay time setting of Pr12-03 and then switch to run the next motors.
12-04 Delay Time due to the Deceleration (or the Decrement) at Motor Switching (seconds)

Settings $\quad 0.0$ to 3600.0 seconds

12-05 Delay time while fixed quantity circulation at Motor Switching (seconds)
Factory Setting: 100
Settings $\quad 0.0$ to 3600.0 seconds

\square Fixed quantity circulation with PID

Sequential Diagram

In this mode, CP2000 can control up to 4 motors to increase controlling flow quantity and pressure range. When controlling flow quantity, motors will be in parallel connection. When controlling pressure range, motors will be in series connection

If need to increase flow quantity or pressure range, CP 2000 will increase first motor's pressure from 0 Hz to the largest operating frequency. If output frequency reaches the frequency setting of Pr12-06 and delay time of Pr12-05, then CP2000 will delay the time setting of Pr12-03. Then CP2000 will switch the motor to use mains electricity and delay the time setting of Pr12-03 to run next motor. If necessary, other motors will be activated in sequence. See sequential diagram of 12-3 and 12-4

Diagram 12-3: Sequence of Fixed quantity circulation with PID - Increasing Demand

Diagram 12-4: Sequence of switching motors at Fixed quantity circulation with PID Increasing Demands

However if decreasing demands when flow quantity and pressure are too big, CP2000 will stop the current operating motors and wait for the delay time setting of Pr12-04. Then keep on doing this until the last motor stop using mains electricity. See sequential diagram 12-5 and 12-6 below.

Diagram 12-5: Sequence of switching motors at Fixed quantity circulation with PID Decreasing Demands

Diagram 12-6: Sequence of switching motors at Fixed quantity circulation with PID Decreasing Demands

Parameter Setting

Parameter setting	Description									
P12-00=2	Choose Fixed quantity circulation with PID									
P12-01 $=\mathrm{X}$	Number of Motors: Maximum 4 motors. After setting number of motor to be connected at the same time, multi-function output terminals will follow automatically the setting as shown in the table below.									
	P12-01	01	01	02	02	03	03	04	04	
	P02-13	55	55	55	55	55	55	55	55	Motor \#1 by Drive
	P02-14		56	56	56	56	56	56	56	Motor \#1 by Mains
	P02-15			57	57	57	57	57	57	Motor \#2 by Drive
	P02-36				58	58	58	58	58	Motor \#2 by Mains
	P02-37					59	59	59	59	Motor \#3 by Drive
	P02-38						60	60	60	Motor \#3 by Mains
	P02-39							61	61	Motor \#4 by Drive
	P02-40								62	Motor \#4 by Mains
	Table 2: Setting of Multi-function Output Terminal on Circulating Motors									
P12-03 $=X$	Delay Time due to the Acceleration (or the Increment) at Motor Switching (unit: second)									
P12-04=X	Delay Time due to the Deceleration (or the Decrement) at Motor Switching (unit: sec)									

P12-05 $=\mathrm{X}$	Delay time while fixed quantity circulation at Motor Switching with PID (unit: seconds)
P12-06 $=\mathrm{X}$	Frequency when switching motors at fixed quantity circulation (Hz)

Disable Motor Output

Set the Multifunction Input Commands as Disable Motors' Output can stop corresponding motors. The settings are:

P02-01~P02-06 $=$	60	61	62	63	64	65	66	67	68
Disable Motor Output	ALL	1	2	3	4	5	6	7	8

When a motor's output is disabled, this motor will park freely
[1] Fixed quantity circulation with PID can control up to 4 motors. The Diagram 12-7 below is an example of controlling 4 motors.

Diagram 12-7

12-06 Frequency when switching motors at fixed quantity circulation (Hz)
Factory Setting: 6000
Settings 0.0 to 600.00 Hz
When the drive's output frequency reaches the setting value of Pr12-06, the system will start preparing to switch motors.
12-07 Action to do when Fixed Quantity Circulation breaks down
Factory Setting: 0

Settings	$0:$ Turn off all output
	$1:$ Motors powered by mains electricity continues to operate

12-08 Frequency when stopping auxiliary motor (Hz)
Factory Setting: 0
Settings $\quad 0.00$ to 600.00 Hz
When the output frequency is smaller than the setting value of Pr12-08 and remains at the time setting of Pr12-04, motors will be shut down one by one.

Fixed quantity control with PID

In this mode, CP2000 can control up to 8 motors to increase controlling flow quantity and pressure range. CP2000 connects directly to a main motor while the rest of motors are using mains electricity and controlled by a relay. When controlling flow quantity, motors will be in parallel connection. When controlling pressure range, motors will be in series connection

If need to increase flow quantity or pressure range, CP2000 will increase the main motor's pressure from 0 Hz to the largest operating frequency. If necessary, CP2000 will switch in sequence the motors to use mains electricity. See sequential diagram of 12-8 and 12-9.

Diagram 12-8: Fixed quantity control with PID - Increasing Demand

Diagram 12-9: Sequence of switching motors at Fixed quantity control with PID - Increasing Demand However, if the flow quantity or pressure is too big, CP2000 will stop, one by one, the motors from using mains electricity until CP2000 decrease the main motor's frequency to 0 Hz .

See diagram 12-10 and diagram 12-11.

Diagram 12-10: Sequence of switching motors at Fixed quantity control with PID - Decreasing Demand

Diagram 12-10: Sequence of switching motors at Fixed quantity control with PID - Decreasing Demand

Parameter Setting	Description									
$\mathrm{P} 12-00=3$	Choose Fixed quantity control									
P12-01 $=\mathrm{X}$	Number of Motors: Maximum 8 motors. After setting number of motor to be connected at the same time, multi-function output terminals will follow automatically the setting as shown in the table below.									
	P12-01	01	02	03	04	05	06	07	08	
	P02-13	55	55	55	55	55	55	55	55	Motor \#1 by Mains
	P02-14		56	56	56	56	56	56	56	Motor \#2 by Mains
	P02-15			57	57	57	57	57	57	Motor \#3 by Mains
	P02-36				58	58	58	58	58	Motor \#4 by Mains
	P02-37					59	59	59	59	Motor \#5 by Mains
	P02-38						60	60	60	Motor \#6 by Mains
	P02-39							61	61	Motor \#7 by Mains
	P02-40								62	Motor \#8 by Mains
	Table 2: Setting of Multi-function Output Terminal on Circulating Motors									
$\mathrm{P} 12-05=\mathrm{X}$	Delay time while fixed quantity circulation at Motor Switching (seconds)									
P12-06=X	Frequency when switching motors at fixed quantity circulation (Hz)									

(1) Disable Motor's Output

Set the Multifunction Input Commands as Disable Motors' Output can stop corresponding motors.
The settings are: :

P02-01~P02-06 $=$	60	61	62	63	64	65	66	67	68
Disable Motor's Output	ALL	1	2	3	4	5	6	7	8

When a motor's output is disabled, this motor will park freely

Wiring: Fixed Quantity Control can control up to 8 motors. The diagram 12-12 is an example of controlling 4 motors at the same time.

Diagram 12-12

Fixed Time circulation and Fixed quantity circulation with PID

This mode combines Fixed Time circulation and Fixed quantity circulation with PID. It is to prevent motors to become rusty if they are not in use for a long period of time. If some motors are not activated, set the fixed time circulation to run motors one by one to make sure each of them has the chance to run.

While all the motors are running and water pressure is enough, the time circulation will not be enabled. Suppose that motor1 and motor2 run to reach a balance in water pressure and when the time reaches the setting at Pr12-02, the motorl will be running without using mains electricity and the motor2 will decelerate to stop.

When the motor2 reaches the frequency setting at $\operatorname{Pr} 12-06$ and the time setting at $\operatorname{Pr} 12-05$, it will be separating from the motor drive. Then when time reaches the setting at Pr12-03, the motor2 will run by using the mains electricity. Then when the time pases the setting at Pr12-03 , the motor3 will be enabled by the motor drive. The time sequence diagram is as shown below.

Diagram 12-13 Enabling Fixed Time Circulation under Fixed Amount Circulation Blance

Fixed Time Circulation and Fixed Quantity Control with PID

This mode combines Fixed Time circulation and Fixed quantity control with PID. It is to prevent motors to become rusty if they are not in use for a long period of time. If some motors are not activated, set the fixed time circulation to run motors one by one to make sure each of them has the chance to run.

When all the motors are running and water pressure is enough, the fixed time circulation will not be enabled. Suppose that the motor1 and motor2 run to reach a balance in water pressure and when time reach the setting at $\operatorname{Pr} 12-02$, the motor 1 will be running without using mains electricity. Then when time reaches the setting at Pr12-03, the motor3 will be running by using mains electricity. At this moment, the operating time of each motor will be reset, once reach the time setting at Pr12-02 again, the motor2 will be running without using mains electricity. Then when time reaches the setting at Pr12-03, the fourth motor 4 will be running by using mains electricity. The time sequence diagram 12-14 is as shown below

Diagram 12-14: Enabling Fixed Time Circulation under Fixed Amount Control Balance

13 Product Applications

1. Multi Motors on Fixed Quantity Circulation Control (VIF control; 1 VFD vs. 3 Motors)

Wiring Diagram (Optional Card: EMC-RA66 Relay card x 1)

2. Applied Parameter Table

Parameter	Function	Decimal Place	Max. Value	Mini. Value	Factory Setting	Applied Setting
00-00	Identity Code of the AC Motor Drive	0	65535	0	0	17
00-01	Rated Current (Amps)	2	655.35	0.00	0.00	22.50
00-22	Stop method	0	1	0	0	1
01-00	Max. Operating Frequency (Hz)	2	600.00	50.00	60.00	50.00
01-01	M1: Max Output Frequency (Hz)	2	600.00	0.00	60.00	50.00
01-02	M1: Max Output Voltage (V)	1	510.0	0.0	400.0	380.0
01-35	M2: Max Output Frequency (Hz)	2	600.00	0.00	60.00	50.00
01-36	M2: Max Output Voltage (V)	1	510.0	0.0	400.0	380.0
02-13	RLY1: Multi Output Terminal	0	62	0	11	55
02-14	RLY2: Multi Output Terminal	0	62	0	1	56
02-15	RLY3: Multi Output Terminal	0	62	0	0	57
02-22	Desired arrival frequency $1(\mathrm{~Hz})$	2	600.00	0.00	60.00	50.00
02-24	Desired arrival frequency 2 (Hz)	2	600.00	0.00	60.00	50.00
02-36	Expansion Card Output Terminal (MO3)	0	62	0	0	58
02-37	Expansion Card Output Terminal (MO4)	0	62	0	0	59
02-38	Expansion Card Output Terminal (MO5)	0	62	0	0	60
02-51	Multi Function Output Terminal status	0	65535	0	0	4
02-54	Display the Saved Memory of the Frequency Command Executed by External Terminal	2	600.00	0.00	60.00	50.00
03-00	AVI analog input function	0	17	0	1	5
03-03	AVI analog input bias (\%)	1	100.0	-100.0	0.0	0.2
03-07	AVI positive/negative bias mode	0	4	0	0	1
05-01	IM Motor 1 Full-Load current (Amps)	2	27.00	2.25	0.00	16.19
05-02	IM1 Motor 1 Rated Power (kW)	2	655.35	0.00	0.00	11.00
05-03	IM1 Motor 1 Rated Rotational Speed (rpm)	0	65535	0	1710	1410
05-05	IM1Motor1 No Load Current (Amps)	2	16.19	0.00	0.00	7.19
05-13	IM Moto 2 Rated Current (Amps)	2	27.00	2.25	0.00	16.19
05-14	IM Motor 2 Rated Power (kW)	2	655.35	0.00	0.00	11.00
05-15	IM2 Motor 2 Rated Rotational Speed (rpm)	0	65535	0	1710	1410

Parameter	Function	Decimal Place	Max. Value	Mini. Value	Factory Setting	Applied Setting
05-17	IM Motor 2 No Load Current (Amps)	2	16.19	0.00	0.00	7.19
05-31	Accumulated Motor Functioning Time (minutes)	0	1439	0	0	27
08-00	PID feedback Terminal option	0	6	0	0	1
08-01	Proportional Gain (\%)	1	500.0	0.0	80.0	1.0
08-25	Reserved	0	65535	0	0	500
08-29	Reserved	0	65535	0	0	3000
08-30	Reserved	0	65535	0	0	1000
08-31	Proportional Gain 2 (\%)	1	500.0	0.0	80.0	1.0
08-34	Reserved	0	65535	0	0	10
09-10	Main Communication Frequency (Hz)	2	600.00	0.00	60.00	50.00
12-00	Circulative Control	0	5	0	0	2
12-01	Multi Motor Control	0	8	1	1	3
12-04	Motor Switch Delay Time while Deceleration (or Decrement) (seconds)	1	3600.0	0.0	1.0	10.0
12-06	Frequency when switching motors at fixed quantity circulation (Hz)	2	600.00	0.00	60.00	50.00
12-08	Frequency when stopping auxiliary motor (Hz)	2	600.00	0.00	0.00	20.00

2.1 Blown Film Extrusion Machine:
 SVC Mode (Sensorless Vector Control)

Load: 18.5KW, $50 \mathrm{~Hz}, 380 \mathrm{~V}, 6 p, 37.7 \mathrm{~A}, 970 \mathrm{rpm}$
Wiring: See wiring diagram of the Frame B

Applied Parameter Table

Parameter	Function	Decimal Place	Max. Value	Mini. Value	Factory Setting	Applied Setting
00-00	ID code of the AC Motor Drive	0	65535	0	0	21
00-01	Rated Current (Amps)	2	655.35	0.00	0.00	32.00
00-11	Speed Mode Control	0	4	0	0	2
00-16	Loading mode selection	0	1	0	0	1
00-23	Motor Operating Direction Control	0	2	0	0	2
01-00	Max. Operating Frequency (Hz)	2	600.00	50.00	60.00	50.00
01-01	M1: Max. Output Frequency (Hz)	2	600.00	0.00	60.00	50.00
01-02	M1: Max Output Voltage (V)	1	510.0	0.0	400.0	380.0
01-35	M2: Max Output Frequency (Hz)	2	600.00	0.00	60.00	50.00
01-36	M2: Max Output Voltage (V)	1	510.0	0.0	400.0	380.0
02-22	Desired Arrival Frequency $1(\mathrm{~Hz})$	2	600.00	0.00	60.00	50.00
02-24	Desired Arrival Frequency $2(\mathrm{~Hz}$)	2	600.00	0.00	60.00	50.00
05-01	IM Motor 1 Full-Load current (Amps)	2	38.40	3.20	0.00	30.00
05-02	IM Motor 1 Rated Power (kW)	2	655.35	0.00	0.00	15.00
05-03	IM Motor 1 Rated Rotational Speed (rpm)	0	65535	0	1710	1460
05-05	IM1 Motor 1 No Load Current (Amps)	2	30.00	0.00	0.00	8.99
05-06	Reserved	3	65.535	0.000	0.000	0.347
05-07	Reserved	3	65.535	0.000	0.000	0.401
05-08	Reserved	1	6553.5	0.0	0.0	146.5
05-09	Reserved	1	6553.5	0.0	0.0	9.4
05-13	IM2 Motor 2 Full Load Current (Amps)	2	38.40	3.20	0.00	28.79
05-14	IM2 Motor 2 Rated Power (kW)	2	655.35	0.00	0.00	18.50
05-15	IM2 Motor 2 Rotational Speed (rpm)	0	65535	0	1710	1410
05-17	IM2 Motor 2 No Load Current (Amps)	2	28.79	0.00	0.00	12.79

$05-31$	Accumulated Motor Functioning Time (minutes)	0	1439	0	0	11
$07-27$	Slip Compensation Gain	2	10.00	0.00	0.00	1.00
$08-25$	Reserved	0	65535	0	0	500
$08-29$	Reserved	0	65535	0	0	3000
$08-30$	Reserved	0	65535	0	0	1000
$08-34$	Reserved	0	65535	0	0	10
$09-10$	Main Communication Frequency (Hz)	2	600.00	0.00	60.00	50.00

2.2 Air Compressor Machine:

SVC mode (Sensorless Vector Control

Load: 18.5KW CP2000 to control an 11 kW motor at 23Amps, 1450 rpm Wiring: See wiring diagram of the Frame B

Applied Parameter Table

Parameter	Function	Decimal Place	Max. Value	Mini. Value	$\begin{aligned} & \text { Factory } \\ & \text { Setting } \end{aligned}$	Applied Setting
00-00	ID Code of the AC Motor Drive	0	65535	0	0	21
00-01	Rated Current (Amps)	2	655.35	0.00	0.00	36.00
00-11	Velocity Control Mode	0	4	0	0	2
00-17	Carrier Frequency (KHz)	0	15	2	8	6
00-21	Source of AUTO Functioning Command	0	5	0	0	1
00-22	Stop Method	0	1	0	0	1
01-00	Max. Operating Frequency (Hz)	2	600.00	50.00	60.00	50.00
01-01	M1: Max. Output Frequency (Hz)	2	600.00	0.00	60.00	50.00
01-02	M1: Max Output Voltage (V)	1	510.0	0.0	400.0	380.0
01-35	M2: Max Output Frequency (Hz)	2	600.00	0.00	60.00	50.00
01-36	M2: Max Output Voltage (V)	1	510.0	0.0	400.0	380.0
02-22	Desired Arrival Frequency 1 (Hz)	2	600.00	0.00	60.00	50.00
02-24	Desired Arrival Frequency $2(\mathrm{~Hz}$)	2	600.00	0.00	60.00	50.00
02-54	Frequency command memory of External Terminal (Hz)	2	600.00	0.00	60.00	50.00
05-01	IM Motor 1 Full-Load current (Amps)	2	43.20	3.60	0.00	23.00
05-02	IM Motor 1 Rated Power (kW)	2	655.35	0.00	0.00	11.00
05-03	IM1 Motor 1 Rated Rotational Speed (rpm)	0	65535	0	1710	1410
05-05	IM1 Motor 1 No Load Current (Amps)	2	23.00	0.00	0.00	6.89
05-06	Reserved	3	65.535	0.000	0.000	0.705
05-07	Reserved	3	65.535	0.000	0.000	0.528
05-08	Reserved	1	6553.5	0.0	0.0	189.1
05-09	Reserved	1	6553.5	0.0	0.0	14.5
05-13	IM2 Motor 2 Full Load Current (Amps)	2	43.20	3.60	0.00	28.79
05-14	IM2 Motor 2 Rated Power (kW)	2	655.35	0.00	0.00	18.50
05-15	IM2 Motor 2 Rotational Speed (rpm)	0	65535	0	1710	1410
05-17	IM2 Motor 2 No Load Current (Amps)	2	28.79	0.00	0.00	12.79
05-31	Accumulated Motor Functioning Time(minutes)	0	1439	0	0	8

Parameter	Function	Decimal Place	Max. Value	Mini. Value	Factory Setting	Applied Setting
$07-27$	Slip Compensation Gain	2	10.00	0.00	0.00	1.00
$08-25$	Reserved	0	65535	0	0	500
$08-29$	Reserved	0	65535	0	0	3000
$08-30$	Reserved	0	65535	0	0	1000
$08-34$	Reserved	0	65535	0	0	10
$09-10$	Main Communication Frequency (Hz)	2	600.00	0.00	60.00	50.00

14 Warning Codes

(1) Display error signal
(2) Abbreviate error code

The code is displayed as shown on KPC-CE01.
(3) Display error description

11	Warning oH2 Over heat 2 warn	Capacity over-heating warning
12		PID feedback error
13	Warning ${ }^{\text {HANO }}$ ANL Analog loss	ACl signal error When Pr03-19 is set to 1 and 2 .
14	Warning uC Under Current	Low current
15	Warning AUE Auto-tune error	Auto tuning error
16	Warning OSPD Over Speed Warn	Over-speed warning
17	Warning DAvE Deviation Warn	Over speed deviation warning
18	Warning PHL Phaso Loss	Phase loss
19	Warning ot1 Over Torque 1	Over torque 1
20	Warning ot2 HaNO Over Torque 2	Over torque 2
21	$\begin{aligned} & \text { Warning } \\ & \text { oH3 } \\ & \text { Motor Over Heat } \end{aligned}$	Motor over-heating
22	Warning OSL OANO Over Slip Warn	Over slip
23	Warning tUn AaNO Auto tuning	Auto tuning processing

24	Warning CGdn Guarding T-out	CAN guarding time-out 1
25		CAN heartbeat time-out 2
26	Warning CSYn SYNC T-out	CAN synchrony time-out
27		CAN bus off
28	Warning CSdn SDONO SD-out	CAN SDO transmission time-out
29		CAN SDO received register overflow
30		CAN boot up error
31	Warning CPtn Error Protocol	CAN format error
32	Warning CIdn CAN/S Idx exceed	CAN index error
33	Warning CAdn CAN/S Addres set	CAN station address error
34	Warning CFrn CAN/S FRAM fail	CAN memory error
35	Warning PLod Opposite Defect	PLC download error
36	Warning PLSv Save mem defect	Save error of PLC download

37	Warning PLdA Data defect	Data error during PLC operation
38	Warning PLFn Function defect	Function code of PLC download error
39	Warning PLor Buf overflow	PLC register overflow
40	Warning PLFF Function defect	Function code of PLC operation error
41		PLC checksum error
42		PLC end command is missing
43	\qquad	PLC MCR command error
44	Warning PLdF Download fail	PLC download fail
45	Warning PLSF Scane time fail	PLC scan time exceed
46		CAN Master guarding error
47	Warning PCbF CAN/M bus off	CAN Master bus off

48	Warning PCnL CAN/M Node Lack	CAN Master node error
49	Warning PCCt HANO CAN/M Cycle Time	CAN/M cycle time-out
50	Warning PCSF CAN/M SDO over	CAN/M SDOover
51	Warning PCSd CAND Cdo Tout	CAN/M SDO time-out
52	Warning PCAd CAN/M Addres se	CAN/M station address error
53	Warning \quad ECid ExCom ID failed	Duplicate MAC ID error Node address setting error
54	Warning \quad ECLV ExCompwr loss	Low voltage of communication card
55	Warning \quad ECtt ExCom Test Mode	Communication card in test mode
56	Warning \quad ECbF ExCom Bus off	DeviceNet bus-off
57	Warning \quad ECnP ExCom No power	DeviceNet no power
58	Warning ECFF ExCom Facty def	Factory default setting error

59	Warning ECiF ExCom Inner err	Serious internal error
60	Warning ECio ExCom IONet brk	IO connection break off
61	Warning ECPP ExCom Pr data	Profibus parameter data error
62	Warning ECPi ExCom Conf data	Profibus configuration data error
63	Warning ECEF ExCom Link fail	Ethernet Link fail
64	Warning ECto ExCom Inr T-out	Communication time-out for communication card and drive
65	Warning ECCS ExCom Inr CRC	Check sum error for Communication card and drive
66	Warning ECrF ExCom Rtn def	Communication card returns to default setting
67	Warning ECoO ExCom MTCP over	Modbus TCP exceed maximum communication value
68	Warning ECo1 ExCom EIP over	EtherNet/IP exceed maximum communication value
69	Warning ECiP ExCom IP fail	IP fail
70	Warning EC3F ExCom Mail fail	Mail fail
71	Warning Ecby ExCom Busy	Communication card busy

72	Warning ictn InrCOM Time Out	Internal Communication Time Out
73	Warning OPHL Output PHL Warn	Output Phase Loss
74	Warning PLrA RTC Adjust	RTC Adjustment
75	Warning PLiC Inner COM Err	Internal Communication Error
76	Warning PLrt Keypad RTC TOut	Keypad RTC Time Out

15 Fault Codes and Descriptions

(1) Display error signal
(2) Abbreviate error code

The code is displayed as shown on KPC-CE01.
(3) Display error description

Fault Name	Fault Descriptions	Corrective Actions
	Over-current during acceleration (Output current exceeds triple rated current during acceleration.)	1. Short-circuit at motor output: Check for possible poor insulation at the output. 2. Acceleration Time too short: Increase the Acceleration Time. 3. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
	Over-current during deceleration (Output current exceeds triple rated current during deceleration.)	1. Short-circuit at motor output: Check for possible poor insulation at the output. 2. Deceleration Time too short: Increase the Deceleration Time. 3. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
	Over-current during steady state operation (Output current exceeds triple rated current during constant speed.)	1. Short-circuit at motor output: Check for possible poor insulation at the output. 2. Sudden increase in motor loading: Check for possible motor stall. 3. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
	Hardware failure in current detection	Return to the factory
Fault GFF Ground fault	Ground fault	When (one of) the output terminal(s) is grounded, short circuit current is more than 50% of $A C$ motor drive rated current, the AC motor drive power module may be damaged. NOTE: The short circuit protection is provided for AC motor drive protection, not for protecting the user. 1. Check the wiring connections between the $A C$ motor drive and motor for possible short circuits, also to ground. 2. Check whether the IGBT power module is damaged. 3. Check for possible poor insulation at the output.

Fault Name	Fault Descriptions	Corrective Actions
Fault occ Short Circuit	Short-circuit is detected between upper bridge and lower bridge of the IGBT module	Return to the factory
	DC BUS over-voltage during acceleration (230V: DC $450 \mathrm{~V} ; 460 \mathrm{~V}$: DC 900V)	1. Check if the input voltage falls within the rated AC motor drive input voltage range. 2. Check for possible voltage transients. 3. If DC BUS over-voltage due to regenerative voltage, please increase the Deceleration Time or add an optional brake resistor.
	DC BUS over-voltage during deceleration (230V: DC $450 \mathrm{~V} ; 460 \mathrm{~V}$: DC 900V)	1. Check if the input voltage falls within the rated AC motor drive input voltage range. 2. Check for possible voltage transients. 3. If DC BUS over-voltage due to regenerative voltage, please increase the Deceleration Time or add an optional brake resistor.
	DC BUS over-voltage at constant speed (230V: DC 450V; 460V: DC 900V)	1. Check if the input voltage falls within the rated AC motor drive input voltage range. 2. Check for possible voltage transients. 3. If DC BUS over-voltage due to regenerative voltage, please increase the Deceleration Time or add an optional brake resistor.
\qquad ovS Ov at stop	Hardware failure in voltage detection	1. Check if the input voltage falls within the rated AC motor drive input voltage range. 2. Check for possible voltage transients.
Fault LvA Lvano Lvaccel	DC BUS voltage is less than Pr.06-00 during acceleration	1. Check if the input voltage is normal 2. Check for possible sudden load
	DC BUS voltage is less than Pr.06-00 during deceleration	1. Check if the input voltage is normal 2. Check for possible sudden load
Fault Lvn Lvano Lvormal SPD	DC BUS voltage is less than Pr.06-00 in constant speed	1. Check if the input voltage is normal 2. Check for possible sudden load
Fault LvS Lv at stop	DC BUS voltage is less than Pr.06-00 at stop	1. Check if the input voltage is normal 2. Check for possible sudden load

Fault Name	Fault Descriptions	Corrective Actions
Fault OrP Phase lacked	Phase Loss	Check Power Source Input if all 3 input phases are connected without loose contacts. For models 40 hp and above, please check if the fuse for the $A C$ input circuit is blown.
	IGBT overheating IGBT temperature exceeds protection level	1. Ensure that the ambient temperature falls within the specified temperature range. 2. Make sure that the ventilation holes are not obstructed. 3. Remove any foreign objects from the heatsinks and check for possible dirty heat sink fins. 4. Check the fan and clean it. 5. Provide enough spacing for adequate ventilation.
	Heatsink overheating Capacitance temperature exceeds cause heatsink overheating.	1. Ensure that the ambient temperature falls within the specified temperature range. 2. Make sure heat sink is not obstructed. Check if the fan is operating 3. Check if there is enough ventilation clearance for AC motor drive.
	Motor overheating The AC motor drive detecting internal temperature exceeds the setting of Pr.06-30 (PTC level)	1. Make sure that the motor is not obstructed. 2. Ensure that the ambient temperature falls within the specified temperature range. 3. Take the next higher power AC motor drive model.
$\begin{aligned} & \text { Fault } \\ & \text { tHANO } \\ & \text { Thermo } 1 \text { open } \end{aligned}$	IGBT Hardware Error	Return to the factory
Fault ${ }^{\text {thano }}$ Thermo 2 open	Capacitor Hardware Error	Return to the factory
	Power Loss (Power Down)	
	Overload The AC motor drive detects excessive drive output current.	1. Check if the motor is overloaded. 2. Take the next higher power AC motor drive model.

Fault Name	Fault Descriptions	Corrective Actions
Fault cd3 cs sensor err	W-phase error	Reboots the power. If fault code is still displayed on the keypad please return to the factory
Fault HdO cc HW error	CC (current clamp)	Reboots the power. If fault code is still displayed on the keypad please return to the factory
Fault Hd1 Oc HW error	OC hardware error	Reboots the power. If fault code is still displayed on the keypad please return to the factory
Fault Hd2 Ov HW error	OV hardware error	Reboots the power. If fault code is still displayed on the keypad please return to the factory
\qquad	Occ hardware error	Reboots the power. If fault code is still displayed on the keypad please return to the factory
Fault AUE Auto tuning err	Auto tuning error	1. Check cabling between drive and motor 2. Try again.
Fault AFE PID Fbk error	PID loss (ACI)	1. Check the wiring of the PID feedback 2. Check the PID parameters settings
Fault ACE AClloss	ACI loss	1. Check the ACI wiring 2. Check if the ACl signal is less than 4 mA
Fault EF External fault	External Fault	1. Input EF (N.O.) on external terminal is closed to GND. Output U, V, W will be turned off. 2. Give RESET command after fault has been cleared.
Fault EF1 Emergency stop	Emergency stop	1. When the multi-function input terminals MI1 to MI6 are set to emergency stop, the AC motor drive stops output $\mathrm{U}, \mathrm{V}, \mathrm{W}$ and the motor coasts to stop. 2. Press RESET after fault has been cleared.

Fault Name	Fault Descriptions	Corrective Actions
Fault HAND bb Base block	External Base Block	1. When the external input terminal (B.B) is active, the $A C$ motor drive output will be turned off. 2. Deactivate the external input terminal (B.B) to operate the AC motor drive again.
HAND Fault Pcod Password error	Password is locked.	Keypad will be locked. Turn the power ON after power OFF to re-enter the correct password. See Pr.00-07 and 00-08.
Fault CE1 PC err command	Illegal function code	Check if the function code is correct (function code must be 03, 06, 10, 63)
Fault CE2 PC err address	Illegal data address (00 H to 254 H)	Check if the communication address is correct
	Illegal data value	Check if the data value exceeds max./min. value
Fault CE4 PC slave fault	Data is written to read-only address	Check if the communication address is correct
CE10 PC time out	Modbus transmission time-out	
CP10 PU time out	Keypad transmission time-out	
Fault bF Braking fault	Brake resistor fault	If the fault code is still displayed on the keypad after pressing "RESET" key, please return to the factory.
Fault ydc Y-delta connect	Y-connection/ Δ-connecti on switch error	1. Check the wiring of the Y-connection/ Δ-connection 2. Check the parameters settings

Fault Name	Fault Descriptions	Corrective Actions
Fault ovU Unknow over volt	Over voltage caused by unknown reason	
	Output phase loss (Phase U)	
Fault OPHL V phase lacked	Output phase loss (Phase V)	
Fault OPHL W phase lacked	Output phase loss (Phase W)	
Fault TRAP CPU Trap Error	CPU trap error	
\qquad	When the drive is running under PLC mode and when Pr00-32 = ${ }^{\wedge} 1$, the drive can be forced to stop by pressing the STOP key on the keypad.	
Fault CGdE Guarding T-out	CANopen guarding error	
Fault CHbE Heartbeat T-out	CANopen heartbeat error	
Fault CSYE SYNC T-out	CANopen synchronous error	
Fault CbFE Can bus off	CANopen bus off error	

Fault Name	Fault Descriptions Corrective Actions
Fault CIdE Can bus Index Err	CANopen index error
Fault CAdE Can bus Add. Err	CANopen station address error
Fault CFrE Can bus off	CANopen memory error
Fault $\begin{aligned} & \text { ictE } \\ & \text { InrCom Time Out }\end{aligned}$	Internal communication time-out

16 CANopen Overview

Newest version is available at http://www.delta.com.tw/industrialautomation/
16.1 CANopen Overview
16.2 Wiring for CANopen
16.3 CANopen Communication Interface Description
16.3.1 CANopen Control Mode Selection
16.3.2 DS402 Standard Control Mode
16.3.3 By using Delta Standard (Old definition, only support speed mode)
16.3.4 By using Delta Standard (New definition)
16.3.5 DI/DO AI AO are controlled via CANopen
16.4 CANopen Supporting Index
16.5 CANopen Fault Code
16.6 CANopen LED Function

The built-in CANopen function is a kind of remote control. Master can control the AC motor drive by using CANopen protocol. CANopen is a CAN-based higher layer protocol. It provides standardized communication objects, including real-time data (Process Data Objects, PDO), configuration data (Service Data Objects, SDO), and special functions (Time Stamp, Sync message, and Emergency message). And it also has network management data, including Boot-up message, NMT message, and Error Control message. Refer to CiA website http://www.can-cia.org/ for details. The content of this instruction sheet may be revised without prior notice. Please consult our distributors or download the most updated version at http://www.delta.com.tw/industrialautomation

Delta CANopen supporting functions:

Support CAN2.0A Protocol;
■ Support CANopen DS301 V4.02;
■ Support DSP-402 V2.0.

Delta CANopen supporting services:

■ PDO (Process Data Objects): PDO1~ PDO4
■ SDO (Service Data Object):
Initiate SDO Download;
Initiate SDO Upload;
Abort SDO;
SDO message can be used to configure the slave node and access the Object Dictionary in every node.
■ SOP (Special Object Protocol):
Support default COB-ID in Predefined Master/Slave Connection Set in DS301 V4.02;
Support SYNC service;
Support Emergency service.
■ NMT (Network Management):
Support NMT module control;
Support NMT Error control;
Support Boot-up.

Delta CANopen not supporting service:

Time Stamp service

16.1 CANopen Overview

CANopen Protocol

CANopen is a CAN-based higher layer protocol, and was designed for motion-oriented machine control networks, such as handling systems. Version 4.02 of CANopen (CiA DS301) is standardized as EN50325-4. The CANopen specifications cover application layer and communication profile (CiA DS301), as well as a framework for programmable devices (CiA 302), recommendations for cables and connectors (CiA 303-1) and SI units and prefix representations (CiA 303-2).

RJ-45 Pin Definition

PIN	Signal	Description
1	CAN_H	CAN_H bus line (dominant high)
2	CAN_L	CAN_L bus line (dominant low)
3	CAN_GND	Ground $/ O V / N-$
6	CAN_GND	Ground $/ O V N$ -

CANopen Communication Protocol

It has services as follows:

- NMT (Network Management Object)
- SDO (Service Data Objects)
- PDO (Process Data Object)
- EMCY (Emergency Object)

NMT (Network Management Object)
The Network Management (NMT) follows a Master/Slave structure for executing NMT service. Only one NMT master is in a network, and other nodes are regarded as slaves. All CANopen nodes have a present NMT state, and NMT master can control the state of the slave nodes. The state diagram of a node is shown as follows:

(1) After power is applied, it is auto in initialization state
(2) Enter pre-operational state automatically
(3) (6) Start remote node

A: NMT
B: Node Guard
(4) (7) Enter pre-operational state

C: SDO
(5) (8) Stop remote node
(9) (10) (11) Reset node

D: Emergency
(12) (13) (14) Reset communication

E: PDO
(15) Enter reset application state automatically
(16) Enter reset communication state automatically

	Initializing	Pre-Operational	Operational	Stopped
PDO			\circ	
SDO		0	\circ	
SYNC		\circ	\circ	
Time Stamp		\circ	\circ	
EMCY		0	\circ	
Boot-up	\circ			
NMT		0	0	\circ

SDO (Service Data Objects)

SDO is used to access the Object Dictionary in every CANopen node by Client/Server model. One SDO has two COB-ID (request SDO and response SDO) to upload or download data between two nodes. No data limit for SDOs to transfer data. But it needs to transfer by segment when data exceeds 4 bytes with an end signal in the last segment.

The Object Dictionary (OD) is a group of objects in CANopen node. Every node has an OD in the system, and OD contains all parameters describing the device and its network behavior. The access path of OD is the index and sub-index, each object has a unique index in OD, and has sub-index if necessary. The request and response frame structure of SDO communication is shown as follows:

PDO (Process Data Object)

PDO communication can be described by the producer/consumer model. Each node of the network will listen to the messages of the transmission node and distinguish if the message has to be processed or not after receiving the message. PDO can be transmitted from one device to one another device or to many other devices. Every PDO has two PDO services: a TxPDO and a RxPDO. PDOs are transmitted in a non-confirmed mode.

PDO Transmission type is defined in the PDO communication parameter index (1400h for the 1st RxPDO or 1800 h for the 1st TxPDO), and all transmission types are listed in the following table:

Type Number	PDO						
	Cyclic	Acyclic	Synchronous	Asynchronous	RTR only		
0		\circ	\circ				
$1-240$	\circ		\circ				
$241-251$							Reserved
252			\circ		\circ		
253				\circ	\circ		
254				\circ			
255				\circ			

Type number 1-240 indicates the number of SYNC message between two PDO transmissions.
Type number 252 indicates the data is updated (but not sent) immediately after receiving SYNC.
Type number 253 indicates the data is updated immediately after receiving RTR.
Type number 254: Delta CANopen doesn't support this transmission format.
Type number 255 indicates the data is asynchronous transmission.
All PDO transmission data must be mapped to index via Object Dictionary.

EMCY (Emergency Object)

When errors occurred inside the hardware, an emergency object will be triggered an emergency object will only be sent when an error is occurred. As long as there is nothing wrong with the hardware, there will be no emergency object to be served as a warning of an error message.

16.2 Wiring for CANopen

An external adapter card: EMC-COP01 is used for CANopen wiring to connect CANopen to VFD CP2000. The link is enabled by using RJ45 cable. The two farthest ends must be terminated with 120Ω terminating resistors.

16.3 CANopen Communication Interface Description

16.3.1 CANopen Control Mode Selection

There are two control modes for CANopen; Pr.09-40 set to 1 is the factory setting mode DS402 standard and Pr.09-40 set to 0 is Delta's standard setting mode.

Actually, there are two control modes according to Delta's standard, one is the old control mode (Pr09-30=0).
This control mode can only control the motor drive under frequency control. Another mode is a new standard (Pr09-30=1)
This new control mode allows the motor drive to be controlled under all sorts of mode.
Currently, C2000 support speed, torque, position and home mode.
The definition of relating control mode are:

CANopen Control Mode Selection	Control Mode	
	Speed	
	Index	Description
$\begin{gathered} \text { DS402 } \\ \text { standard } \\ \text { Pro9-40=1 } \end{gathered}$	6042-00	Target rotating speed (RPM)

$\begin{aligned} & \text { Delta Standard } \\ & \text { (Old definition) } \\ & \text { Pro9-40=0 } \\ & \text { Pr09-30 }=0 \end{aligned}$	2020-02	Target rotating speed (Hz)
Delta Standard (New definition)	2060-03	Target rotating speed (Hz)
$\begin{aligned} & \text { Pr09-40=0, } \\ & \text { Pr09-30 }=1 \end{aligned}$	2060-04	Torque Limit $(\%)$

$\begin{array}{c}\text { CANopen Control Mode } \\ \text { Selection }\end{array}$	Operation Control	
	Index	Description
$\begin{array}{c}\text { DS402 standard } \\ \text { Pr. 09-40=1 }\end{array}$	$6040-00$	Operation Command
$\begin{array}{c}\text { Delta Standard (OId definition) } \\ \text { P09--40 }\end{array}$	-0, P09-30	

CANopen Control Mode Selection	Other	
	Index	Description
DS402 standard	605A-00	Quick stop processing method
Pr. 09-40=1	605C-00	Disable operation processing method
Delta Standard (Old definition) Pr09-40=1, Pr09-30=0	-----	-----
Delta Standard (New definition)	-----	-----
Pr09-40=0, Pr09-30=1	-----	-----

However, you can use some index regardless DS402 or Delta's standard.
For example:

1. Index which are defined as RO attributes.
2. Index correspond to parameters such as (2000 ~200B-XX)
3. Accelerating/Decelerating Index: 604F 6050
4. Control mode: Index : 6050

16.3.2 DS402 Standard Control Mode

16.3.2.1 Related set up of ac motor drive (by following DS402 standard)

If you want to use DS402 standard to control the motor drive, please follow the steps below:

1. Wiring for hardware (refer to chapter 16-2 Wiring for CANopen)
2. Operation source setting: set Pr. $00-21=3$ for CANopen communication card control.
3. Frequency source setting: set Pr. $00.20=6$. (Choose source of frequency commend from CANopen setting.)
4. Set DS402 as control mode: Pr09-40=1
5. CANopen station setting: set Pr.09-36 (Range of setting is $1 \sim 127$. When Pr.09-36=0, CANopen slave function is disabled.) (Note: If error arise (CAdE or CANopen memory error) as station setting is completed, press Pr.00-02=7 for reset.)
6. CANopen baud rate setting: set Pr.09.37 (CANBUS Baud Rate: 1M(0), 500K(1), 250K(2), 125K(3), 100K(4) and50K(5))
7. Set multiple input functions to Quick Stop (it can also be enable or disable, default setting is disable). If it is necessary to enable the function, set MI terminal to 53 in one of the following parameter: Pr. 02.01 ~Pr. 02.08 or Pr. 02.26 ~ Pr.02.31. (Note: This function is available in DS402 only.)

16.3.2.1 The status of the motor drive (by following DS402 standard)

According to the DS402 definition, the motor drive is divided into 3 blocks and 9 status as described below.

3 blocks

Power Disable: That means without PWM output
Power Enable: That means with PWM output
Fault: One or more than one error has occurred.

9 status

Start: Power On
Not ready to switch on: The motor drive is initiating.
Switch On Disable: When the motor drive finishes the initiation, it will be at this mode.
Ready to switch on: Warming up before running.
Switch On: The motor derive has the PWM output now, but the reference commend is not effective.

Operate Enable: Able to control normally.
Quick Stop Active: When there is a Quick Stop request, you have to stop running the motor drive.
Fault Reaction Active: The motor drive detects conditions which might trigger error(s).
Fault: One or more than errors has occurred to the motor drive.
Therefore, when the motor drive is turned on and finishes the initiation, it will remain at Ready to

Switch on status. To control the operation of the motor drive, you need to change this status to Operate Enable status. The way to change it is to commend the control word's bit0 ~ bit3 and bit7 of the Index 6040H and to pair with Index Status Word (Status Word 0X6041). The control steps and index definition are described as below:

Index 6040

$15 \sim 9$	8	7	$6 \sim 4$	3	2	1	0
Reserved	Halt	Fault Reset	Operation	Enable operation	Quick Stop	Enable Voltage	Switch On

Index 6041

$15 \sim 14$	$13 \sim 12$	11	10	9	8	7	6	5	4	3	2	1	0
Reserved Operation	Internal limit active	Target reached	Remote	Reserved	Warning	Switch on disabled	Quick stop	Voltage enabled	FaultOperation enable	Switch on	Ready to switch on		

Set command $6040=0 x E$, then set another command $6040=0 x F$. Then the motor drive can be switched to Operation Enable. The Index 605A decides the dashed line of Operation Enable when the control mode changes from Quick Stop Active. (When the setting value is 1~3, this dashed line is active. But when the setting value of 605A is not 1~3, once he motor derive is switched to Quick Stop Active, it will not be able to switch back to Operation Enable.)

Index	Sub	Definition	Factory Setting	R/W	Size	Unit	PDO Map	Mode	note
605Ah	0	Quick stop option code							

Besides, when the control section switches from Power Enable to Power Disable, use 605C to define parking method.

Index	Sub	Definition	Factory Setting	R/W	Size	Unit	PDO Map	Mode	note
$605 C h$	0	Disable operation option code	1	RW	S16		No	0: Disable drive function 1: Slow down with slow down ramp; disable of the drive function	

16-3-2-3 Various mode control method (by following DS402 standard)

Control mode of C2000, supporting speed, torque, position and home control are described as below:

Speed mode

1. Let Ac Motor Drive be at the speed control mode: Set Index6060 to 2 .
2. Switch to Operation Enable mode: Set $6040=0 x E$, then set $6040=0 x F$.
3. To set target frequency: Set target frequency of 6042 , since the operation unit of 6042 is rpm , there is a transformation:

$$
\begin{aligned}
& \mathrm{n}=\mathrm{f} \times \frac{120}{\mathrm{p}} \quad \mathrm{n} \text { : rotation speed (rpm) (rounds/minute) } \quad \text { P: motor's pole number (Pole) } \\
& \text { f: rotation frequency }(\mathrm{Hz})
\end{aligned}
$$

For example:
Set $6042 \mathrm{H}=1500$ (rpm), if the motor drive's pole number is 4 (Pr05-04 or Pr05-16), then the motor drive's operation frequency is $1500(120 / 4)=50 \mathrm{~Hz}$.

Besides, the 6042 is defined as a signed operation. The plus or minus sign means to rotate clockwise or counter clockwise
4. To set acceleration and deceleration: Use 604F(Acceleration) and 6050(Deceleration).
5. Trigger an ACK signal: In the speed control mode, the bit 6~4 of Index 6040 needs to be controlled. It is defined as below:

Sndex 6040 Speed mode (Index 6060=2)	Bit 6	Bit 5	Bit 4	SUM
	1	0	1	Locked at the current signal.
	1	1	1	Run to reach targeting signal.
	Other			
Decelerate to 0Hz.				

NOTE 01: To know the current rotation speed, read 6043. (unit: rpm)
NOTE 02: To know if the rotation speed can reach the targeting value; read bit 10 of 6041. (0: Not reached; 1: Reached)

16.3.3 By using Delta Standard (Old definition, only support speed mode)

16-3.3.1 Various mode control method (by following DS402 standard)

If you want to use DS402 standard to control the motor drive, please follow the steps below:

1. Wiring for hardware (Refer to chapter 15.2 Wiring for CANopen)
2. Operation source setting: set Pr.00-21 to 3 for CANopen communication card control.
3. Frequency source setting: set Pr. 00.20 to 6 . (Choose source of frequency commend from CANopen setting.)
4. Set Delta Standard (Old definition, only support speed mode) as control mode: Pr. 09-40 = 0 and $09-30=0$.
CANopen station setting: set Pr.09-36 (Range of setting is 1~127. When Pr.09-36=0, CANopen slave function is disabled.) (Note: If error arised (CAdE or CANopen memory error) as station setting is completed, press Pr.00-02=7 for reset.)
5. CANopen baud rate setting: set Pr. 09.37 (CANBUS Baud Rate: 1M(0), 500K(1), 250K(2), 125K(3), 100K(4) and50K(5))

16-3-3-2 By speed mode

1. Set the target frequency: Set 2020-02, the unit is Hz , with a number of 2 decimal places. For example 1000 is 10.00 .
2. Operation control: Set $2020-01=0002 \mathrm{H}$ for Running, and set $2020-01=0001 \mathrm{H}$ for Stopping.

16.3.4 By using Delta Standard (New definition)

16-3-4-1 Related set up of ac motor drive (Delta New Standard)

If you want to use DS402 standard to control the motor drive, please follow the steps below:

1. Wiring for hardware (Refer to chapter 15.2 Wiring for CANopen)
2. Operation source setting: set Pr.00-21 to 3 for CANopen communication card control.
3. Frequency source setting: set Pr. 00.20 to 6 . (Choose source of frequency commend from CANopen setting.)
4. Set Delta Standard (Old definition, only support speed mode) as control mode: Pr. 09-40 $=0$ and $09-30=0$.
5. CANopen station setting: set Pr.09-36 (Range of setting is 1~127. When Pr.09-36=0, CANopen slave function is disabled.) (Note: If error arised (CAdE or CANopen memory error) as station setting is completed, press Pr.00-02=7 for reset.)
6. CANopen baud rate setting: set Pr.09.37 (CANBUS Baud Rate: 1M(0), 500K(1), 250K(2), 125K(3), 100K (4) and50K(5))

16-3-4-2 Various mode control method (Delta New Standard)

Speed Mode

1. Let Ac Motor Drive be at the speed control mode: Set Index6060 $=2$.
2. Set the target frequency: set 2060-03, unit is Hz , with a number of 2 decimal places. For example 1000 is 10.00 Hz .
3. Operation control: set 2060-01 $=008 \mathrm{H}$ for Server on, and set 2060-01 $=0081 \mathrm{H}$ for Running.

NOTE01: To know the current position, read 2061-05.
NOTE02: To know if reaching the target position, read bit 0 of 2061 (0 : Not reached, 1: Reached).

16-3-5 DI/DO AI AO are controlled via CANopen

To control the DO AO of the motor drive through CANopen, follow the steps below:

1. To set the DO to be controlled, define this DO to be controlled by CANopen. For example, set Pr02-14 to control RY2.
2. To set the DO to be controlled, define this AO to be controlled by CANopen. For example, set Pr03-23 to control AFM2.
3. To control the mapping index of CANopen. If you want to control DO, then you will need to control Index2026-41. If you want to control AO, then you will need to control 2026-AX. If you want to set RY2 as ON, set the bit 1 of Index 2026-41 =1, then RY2 will output 1. If you want to control AFM2 output $=50.00 \%$, then you will need to set Index 2026-A2 $=5000$, then AFM2 will output 50%.

Mapping table of CANopen DI DO AI AO:

DI:

Terminal	Related Parameters	R/W	Mapping Index
FWD	$==$	RO	$2026-01$ bit 0
REV	$==$	RO	$2026-01$ bit 1
MI 1	$==$	RO	$2026-01$ bit 2
MI 2	$==$	RO	$2026-01$ bit 3
MI 3	$==$	RO	$2026-01$ bit 4
MI 4	$==$	RO	$2026-01$ bit 5
MI 5	$==$	RO	$2026-01$ bit 6
MI 6	$==$	RO	$2026-01$ bit 7
MI 7	$==$	RO	$2026-01$ bit 8
MI 8	$==$	RO	$2026-01$ bit 9
MI 10	$==$	RO	$2026-01$ bit 10
MI 11	$==$	RO	$2026-01$ bit 11
MI 12	$==$	RO	$2026-01$ bit 12
MI 13	$==$	RO	$2026-01$ bit 13
MI 14	$==$	RO	$2026-01$ bit 14
MI 15	$==$	RO	$2026-01$ bit 15

DO :

Terminal	Related Parameters	R/W	Mapping Index
RY1	P2-13 $=50$	RW	$2026-41$ bit 0
RY2	P2-14 $=50$	RW	$2026-41$ bit 1
	P2-15 $=50$	RW	$2026-41$ bit 2
MO1	P2-16 $=50$	RW	$2026-41$ bit 3
MO2	P2-17 $=50$	RW	$2026-41$ bit 4
MO3	P2-18 $=50$	RW	$2026-41$ bit 5
MO4	P2-19 $=50$	RW	$2026-41$ bit 6
MO5	P2-20 $=50$	RW	$2026-41$ bit 7
MO6	P2-21 $=50$	RW	$2026-41$ bit 8
MO7	P2-22 $=50$	RW	$2026-41$ bit 9
MO8	P2-23 $=50$	RW	$2026-41$ bit 10

AI :

Terminal	Related Parameters	R/W	Mapping Index
AVI	$==$	RO	Value of 2026-61
ACl	$==$	RO	Value of 2026-62
AUI	$==$	RO	Value of 2026-63

AO :

Terminal	Related Parameters	R/W	Mapping Index
AFM1	P3-20 $=20$	RW	Value of 2026-A1
AFM2	P3-23 $=20$	RW	Value of 2026-A2

16.4 CANopen Supporting Index

C2000 Index:
Parameter index corresponds to each other as following:

Index

$2000 \mathrm{H}+$ Group

sub-Index

member +1

For example:

Pr. 10.15 (Encoder Slip Error Treatment)

Group

member

$$
10(0 \bar{A} H) \quad-\quad 15(0 \mathrm{FH})
$$

$$
\text { Index }=2000 \mathrm{H}+0 \mathrm{AH}=200 \mathrm{~A}
$$

Sub Index $=0 \mathrm{FH}+1 \mathrm{H}=10 \mathrm{H}$
CP2000 Control Index:
Delta Standard Mode (Old definition)

Index	Sub	Definition	Factory Setting	R/W	Size		Note
2020H	0	Number	3	R	U8		
	1	Control word	0	RW	U16	Bit 0~1	00B:disable
							01B:stop
							10B:disable
							11B: JOG Enable
						Bit2~3	Reserved
						Bit4~5	00B:disable
							01B: Direction forward
							10B: Reverse
							11B: Switch Direction
						Bit6~7	00B: $1^{\text {st }}$ step Accel. /Decel.
							01B: $2^{\text {nd }}$ step Accel. /Decel.
							10B: $3^{\text {rd }}$ step Accel. /Decel.
							11B: $4^{\text {th }}$ step Accel. /Decel.
						Bit8~15	0000B: Master speed
							0001B: $1^{\text {st }}$ step speed
							0010B: $2^{\text {nd }}$ step speed
							0011B: $3^{\text {rd }}$ step speed
							0100B: $4^{\text {th }}$ step speed
							0101B: $5^{\text {th }}$ step speed
							0110B: $6^{\text {th }}$ step speed
							0111B: $7^{\text {th }}$ step speed
							1000B: $8^{\text {th }}$ step speed
							1001B: $9^{\text {th }}$ step speed
							1010B: $10^{\text {th }}$ step speed
							1011B: $11^{\text {th }}$ step speed
							1100B: $12^{\text {th }}$ step speed
							1101B: $13^{\text {th }}$ step speed
							1110B: $14^{\text {th }}$ step speed
							1111B: $15^{\text {th }}$ step speed
						Bit12	1: Enable the function of Bit6-11
						Bit13~14	00B: no function
							01B: Operation command by the digital keypad

Index	Sub	Definition	Factory Setting	R/W	Size		Note
	3	Display actual output frequency (XXX.XXHz)	0	R	U16		
	4	Display DC-BUS voltage (XXX.XV)	0	R	U16		
	5	Display output voltage (XXX.XV)	0	R	U16		
	6	Display output power angle (XX.X́)	0	R	U16		
	7	Display output power in kW	0	R	U16		
	8	Display actual motor speed (rpm)	0	R	U16		
	9	Display estimate output torque (XXX.X\%)	0	R	U16		
	-	-	-	-	-	-	
	B	Display PID feedback value after enabling PID function in \% (To 2 decimal places)	0	R	U16		
	C	Display signal of AVI 1 analog input terminal, 0-10V corresponds to 0-100\% (To 2 decimal places)	0	R	U16		
	D	Display signal of ACl analog input terminal, $4-\mathrm{V} 20 \mathrm{~mA} / 0-10 \mathrm{~V}$ corresponds to 0-100\% (To 2 decimal places)	0	R	U16		
	E	Display signal of AVI 2 analog input terminal, $-10 \mathrm{~V} \sim 10 \mathrm{~V}$ corresponds to -100~100\% (To 2 decimal places)	0	R	U16		
	F	Display the IGBT temperature of drive power module in ${ }^{\circ} \mathrm{C}$	0	R	U16		
	10	Display the temperature of capacitance in ${ }^{\circ} \mathrm{C}$	0	R	U16		
	11	The status of digital input (ON/OFF), refer to Pr.02-12	0	R	U16		
	12	The status of digital output (ON/OFF), refer to Pr.02-18	0	R	U16		
	13	Display the multi-step speed that is executing	0	R	U16		
	14	The corresponding CPU pin status of digital input	0	R	U16		
	15	The corresponding CPU pin status of digital output	0	R	U16		
	-	-	-	-	-		
	-	-	-	-	-		
	-	-	-	-	-		
	-	-	-	-	-		
	1A	Display times of counter overload ($0.00 \sim 100.00 \%$)	0	R	U16		
	1B	Display GFF in \%	0	R	U16		
	1C	Display DCbus voltage ripples (Unit: Vdc)	0	R	U16		
	1D	Display PLC register D1043 data	0	R	U16		
	1E	Display Pole of Permanent Magnet Motor	0	R	U16		
	1F	User page displays the value in physical measure	0	R	U16		
	20	Output Value of Pr.00-05	0	R	U16		

Index	Sub	Definition	Factory Setting	R / W	Size	Note	
	21	Number of motor turns when drive operates	0	R	U 16		
	22	Operation position of motor	0	R	U 16		
	23	Fan speed of the drive	0	R	U 16		
	24	Control mode of the drive 0: speed mode 1: torque mode	0	R	$\mathrm{U16}$		
	25	Carrier frequency of the drive	0	R	U 16		

CANopen Remote IO mapping

Index	Sub	R/W	
2026 H	01 h	R	Each bit corresponds to the different input terminals
	02 h	R	Each bit corresponds to the different input terminals
	03 h 40 h	R	Reserved
	41 h	RW	Each bit corresponds to the different output terminals
	$42 \mathrm{~h} \sim 60 \mathrm{~h}$	R	Reserved
	61 h	R	AVI (\%)
	62 h	R	ACI (\%)
	63 h	R	AUI (\%)
	R	Reserved	
	A4h~A0h	RW	AFM1 (\%)
	A1h	RW	AFM2 (\%)

Delta Standard Mode (New definition)

Index	sub	R/W	Size	Descriptions			Speed Mode
					Definition	iority	
2060h	00h	R	U8				
	01h	h RW	U16	0	Ack	4	$\begin{aligned} & \text { 0:fcmd =0 } \\ & \text { 1:fcmd = Fset(Fpid) } \end{aligned}$
				1	Dir	4	0 : FWD run command 1: REV run command
				2			
				3	Halt		0: drive run till target speed is attained 1: drive stop by declaration setting
				4	Hold		0: drive run till target speed is attained 1: frequency stop at current frequency
				5	JOG		$\begin{aligned} & \text { 0:JOG OFF } \\ & \text { Pulse 1:JOG RUN } \end{aligned}$
				6	QStop		Quick Stop
				7	Power		0 :Power OFF 1:Power ON
				14~8			
				15			Pulse 1: Fault code cleared
	02h	RW	U16				
	03h	RW	U16				Speed command (unsigned decimal)
	04h	RW	U16				
	05h	RW	S32				

DS402 Standard

Index	Sub	Definition	Factory Setting	R/W	Size	Unit	$\begin{aligned} & \text { PDO } \\ & \text { Map } \end{aligned}$	Mode	Note
6007h	0	Abort connection option code	2	RW	S16		Yes		0: No action
									2: Disable Voltage,
									3: quick stop
603Fh	0	Error code	0	R0	U16		Yes		
6040h	0	Control word	0	RW	U16		Yes		
6041h	0	Status word	0	R0	U16		Yes		
6042h	0	vl target velocity	0	RW	S16	rpm	Yes	vl	
6043h	0	vl velocity demand	0	RO	S16	rpm	Yes	vl	
6044h	0	vl control effort	0	RO	S16	rpm	Yes	vl	
604Fh	0	vl ramp function time	10000	RW	U32	1 ms	Yes	vl	Unit must be: 100 ms , and
6050h	0	vl slow down time	10000	RW	U32	1 ms	Yes	vl	check if the setting is set to
6051h	0	vl quick stop time	1000	RW	U32	1ms	Yes	vl	0 .
605Ah	0	Quick stop option code	2	RW	S16		No		0 : disable drive function 1 :slow down on slow down ramp
									2: slow down on quick stop ramp
									5 slow down on slow down ramp and stay in QUICK STOP
									6 slow down on quick stop ramp and stay in QUICK STOP
605Ch	0	Disable operation option code	1	RW	S16		No		0 : Disable drive function 1: Slow down with slow down ramp; disable of the drive function
6060h	0	Mode of operation	2	RW	S8		Yes		1: Profile Position Mode 2: Velocity Mode 4: Torque Profile Mode 6: Homing Mode

Index	Sub	Definition	Factory Setting	R/W	Size	Unit	$\begin{aligned} & \text { PDO } \\ & \text { Map } \end{aligned}$	Mode	Note
6061h	0	Mode of operation display	2	RO	S8		Yes		Same as above
6071h	0	tq Target torque	0	RW	S16	0.1\%	Yes	tq	Valid unit: 1\%
6072h	0	tq Max torque	150	RW	U16	0.1\%	No	tq	Valid unit: 1\%
6075h	0	tq Motor rated current	0	RO	U32	mA	No	tq	
6077h	0	tq torque actual value	0	RO	S16	0.1\%	Yes	tq	
6078h	0	tq current actual value	0	RO	S16	0.1\%	Yes	tq	
6079h	0	tq DC link circuit voltage	0	RO	U32	mV	Yes	tq	

16.5 CANopen Fault Code

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
Fault ocA Oc at accel	0001H	Over-current during acceleration	2213 H	1
Fault \quad HaND ocd Oc at decel	0002H	Over-current during deceleration	2213 H	1
	0003H	Over-current during steady status operation	2214H	1
	0004H	Ground fault. When (one of) the output terminal(s) is grounded, short circuit current is more than 50% of $A C$ motor drive rated current. NOTE: The short circuit protection is provided for AC motor drive protection, not for protection of the user.	2240H	1
	0005H	Short-circuit is detected between upper bridge and lower bridge of the IGBT module.	2250H	1
	0006H	Over-current at stop. Hardware failure in current detection	2314H	1
FaultHaNo ovA Ovat accel	0007H	Over-current during acceleration. Hardware failure in current detection	3210H	2
Fault ovd Ov at decel	0008H	Over-current during deceleration. Hardware failure in current detection.	3210 H	2
Fault ovn Ov at normal SPD	0009H	Over-current during steady speed. Hardware failure in current detection.	3210H	2
	000AH	Over-voltage at stop. Hardware failure in current detection	3210 H	2

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
\qquad	000BH	DC BUS voltage is less than Pr.06.00 during acceleration.	3220H	2
Fault Lvd Lv at decel	000CH	DC BUS voltage is less than Pr.06.00 during deceleration.	3220 H	2
Fault \quad Lvn Lvat normal SPD	000DH	DC BUS voltage is less than Pr. 06.00 in constant speed.	3220 H	2
Fault \quad HaND LvS Lv at stop	000EH	DC BUS voltage is less than Pr.06-00 at stop	3220 H	2
Fault OrP Phase Lacked	000FH	Phase Loss Protection	3130 H	2
Fault oH1 IGBT over heat	0010H	IGBT overheat IGBT temperature exceeds protection level. $\begin{aligned} & 1 \sim 15 \mathrm{HP}: 90^{\circ} \mathrm{C} \\ & 20 \sim 100 \mathrm{HP}: 100^{\circ} \mathrm{C} \end{aligned}$	4310H	3
Fault $\mathrm{oH} 2$ Hear Sink oH	0011H	Heat sink overheat Heat sink temperature exceeds 90 oC	4310 H	3
Fault tH1o Thermo 1 open	0012H	Temperature detection circuit error (IGBT) IGBT NTC	FFOOH	3
Fault ${ }^{\text {tH2NO }}$ Thermo 2 open	0013H	Temperature detection circuit error (capacity module) CAP NTC	FF01H	3
Fault PWR Power RST OFF	0014H	Power RST off	FF02H	2

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
	0015H	Overload. The AC motor drive detects excessive drive output current. NOTE: The AC motor drive can withstand up to 150% of the rated current for a maximum of 60 seconds.	2310H	1
Fault \quad HaNo EoL1 Thermal relay 1	0016H	Electronics thermal relay 1 protection	2310H	1
Fault \quad HaND EoL2 Thermal relay 2	0017H	Electronics thermal relay 2 protection	2310 H	1
HAND Fault ot1 Over torque 1	001AH	These two fault codes will be displayed when output current exceeds the over-torque detection level (Pr. 06.07 or	8311H	3
Fault \quad hano ot2 Over torque 2	001BH	Pr.06.10) and exceeds over-torque detection (Pr.06.08 or Pr.06.11) and it is set 2 or 4 in Pr.06-06 or Pr.06-09.	8311H	3
Fault uC Under torque 1	001CH	Low current	8321H	1
Fault \quad HaNo CF1 EEPROM write Err	001EH	Internal EEPROM can not be programmed.	5530H	5
Fault \quad HaND CF2 EEPROM read Err	001FH	Internal EEPROM can not be read.	5530H	5
\qquad	0021H	U-phase error	FF04H	1
Fault \quad hano cd2 Ibs sensor Err	0022H	V-phase error	FF05H	1
FaultHaNO cd3 Ics sensor Err	0023H	W-phase error	FF06H	1

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
Fault HdO cc HW Error	0024H	cc (current clamp) hardware error	FF07H	5
Fault Hd1 oc HW Error	0025H	oc hardware error	FF08H	5
Fault Hd2 ov HW Error	0026H	ov hardware error	FF09H	5
Fault Hd3 GFF HW Error	0027H	GFF hardware error	FFOAH	5
Fault AUE Auto tuning Err	0028H	Auto tuning error	FF21H	1
Fault AFE PID Fbk Error	0029H	PID loss (ACI)	FF22H	7
Fault ACE ACl loss	0030H	ACI loss	FF25H	1
Fault EF EFND External Fault	0031H	External Fault When input EF (N.O.) on external terminal is closed to GND, AC motor drive stops output U, V, and W .	9000H	5
Fault EF1 Emergency stop	0032H	Emergency stop When the multi-function input terminals MI1 to MI6 are set to emergency stop, the AC motor drive stops output $\mathrm{U}, \mathrm{V}, \mathrm{W}$ and the motor coasts to stop.	9000H	5
Fault bbaNo Base block	0033H	External Base Block When the external input terminals MI1 to MI16 are set as bb and active, the AC motor drive output will be turned off	9000H	5

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
Fault Pcod Password Error	0034H	Password will be locked if three fault passwords are entered	FF26H	5
Fault \quad ccod SW code Error	0035H	Software error	6100H	5
Fault cE1 Modbus CMD err	0036H	Illegal function code	7500H	4
Fault cE2 Modbus ADDR err	0037H	Illegal data address (00H to 254 H)	7500H	4
Fault \quad cE3 Modbo Mod DATA err	0038H	Illegal data value	7500H	4
Fault cE4 Modbus slave FLT	0039H	Data is written to read-only address	7500H	4
Fault cE10 Modbus time out	003AH	Modbus transmission timeout.	7500H	5
Fault \quad cP10 Kano Keypad time out	003BH	Keypad transmission timeout.	7500H	4
\qquad	003CH	Brake resistor fault	7110H	4
Fault \quad HaND ydc Y-delta connect	003DH	Motor Y- Δ switch error	3330 H	2
Fault dEb Dec. Energy back	003EH	Energy regeneration when decelerating	FF27H	2

Display	Fault code	Description	CANopen fault code	$\begin{aligned} & \text { CANopen } \\ & \text { fault } \\ & \text { register } \\ & \text { (bit } 0 \sim 7 \text {) } \end{aligned}$
\qquad	003FH	Over slip error. Slip exceeds Pr.05.26 limit and slip duration exceeds Pr.05.27 setting.	FF28H	7
HAND Fault ocU Unknow Over Apm	0042H	over current caused by unknown reason	2310H	1
Fault ovU Unknow Over volt.	0043H	over voltage caused by unknown reason	3210 H	2
HAND Fault S1 S1-Emergy stop	0049H	external safety emergency stop	FF2AH	5
HAND Fault OPHL U phase lacked	0052H	U phase output phase loss	2331H	2
HAND Fault OPHL U phase lacked	0053H	V phase output phase loss	2332H	2
Fault OPHL U phase lacked	0054H	W phase output phase loss	2333H	2
Fault aocc A phase short	004FH	A phase short	FF2BH	1
HAND Fault bocc B phase short	0050H	B phase short	FF2CH	1
HAND Fault cocc C phase short	0051H	C phase short	FF2DH	1
HAND Fault CGdE Guarding T-out	0065H	Guarding time-out 1	8130H	4

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
Fault CHbE Heartbeat T-out	0066H	Heartbeat time-out	8130H	4
Fault CSyE SYNC T-out	0067H	CAN synchrony error	8700H	4
Fault CbFE CAN/S bus off	0068H	CAN bus off	8140H	4
Fault CIdE CAN/S Idx exceed	0069H	Can index exceed	8110H	4
Fault CAdE CAN/S add. set	006AH	CAN address error	0x8100	4
Fault CFdE CAN/S FRAM fail	006BH	CAN frame fail	0x8100	4
FaultictE InrCom Time Out	006FH	Internal communication error	7500H	4

16.6 CANopen LED Function

There are two CANopen flash signs: RUN and ERR.
RUN LED:

LED status	Condition	CANopen State
OFF		Initial
Blinking		Pre-Operation
Single flash		Stopped
ON		Operation

ERR LED:

LED status	Condition/ State
OFF	No Error
Single flash	One Message fail
Double flash	Guarding fail or heartbeat fail
Triple flash	SYNC fail
ON	Bus off

Chapter 17 PLC Function

17.1 PLC Overview

17.2 Precautions for Using PLC
17.3 Start-up

17-3-1 Connect to PC
17-3-2 I/O Device Reference Table
17-3-3 WPLSoft Installation
17-3-4 Program Input
17-3-5 Program Download
17-3-6 Program Monitor
17.4 PLC Ladder Diagram
17.5 PLC Devices

17-5-1 Devices Functions
17-5-2 Special Auxiliary Relays (Special M)
17-5-3 Special Registers (Special D)
17-5-4 Communication address for PLC Devices
17.6 Commands

17-6-1 Basic Commands
17-6-2 Explanation for the Command
17-6-3 Description of the Application Commands
17-6-4 Explanation for the Application Commands
17.7 Error Code and Troubleshoot
17.8 CANopen Master Application
17.9 Descriptions of PLC Modes and Controls (Speed, Torque, Homing and Position)
17.10 Internal Communication for Master Control
17.11 Counting Function via MI8

17-12 Remote IO Control Application of MODBUS (using Modbus)

17.1 PLC Overview

17.1.1 Introduction

The built in PLC function in CP2000 allows following commands: WPLSoft, basic commands and application commands; the operation methods are the same as Delta DVPPLC series. Other than that, CANopen master provides 8 stations for synchronous control and 126 asynchronous controls.
E, Note
In C2000, CANopen master synchronous control complies with DS402 standard and supports homing mode, speed mode, torque mode and point to point control mode; CANopen slave supports two control modes, speed mode and torque mode.

17.1.2 Ladder Diagram Editor - WPLSoft

WPLSoft is a program editor of Delta DVP-PLC series and C2000 series for WINDOWS. Besides general PLC program planning and general WINDOWS editing functions, such as cut, paste, copy, multi-windows, WPLSoft also provides various Chinese/English comment editing and other special functions (e.g. register editing, settings, the data readout, the file saving, and contacts monitor and set, etc.).
Following is the system requirement for WPLSoft:

Item	System Requirement
Operation System	Windows 95/98/2000/NT/ME/XP
CPU	Pentium 90 and above
Memory	17MB and above (32MB and above is recommended)
Hard Disk	Capacity: 50 MB and above CD-ROM (for installing WPLSoft)
Monitor	Resolution: $640 \times 480,17$ colors and above, It is recommended to set display setting of Windows to 800×600.
Mouse	General mouse or the device compatible with Windows
Printer	Printer with Windows driver
RS-232 port	At least one of COM1 to COM8 can be connected to PLC
Applicable Models	All Delta DVP-PLC series and C2000 series

17-2 Precautions for Using PLC Functions

1. Default setting of PLC communication protocol is $7, \mathrm{~N}, 2,9600$, station number 2. User can change PLC station using Pr.09-35 but station address must be different to the AC motor drive's station address (Pr.09-00).
2. C2000 series offers 2 communication ports for PLC program upload and download. Refer to the figure follows for port location. The communication protocol of Channel 1 is always 19200,8,N,2 。

3. Host controller can read/write data from/to both the AC motor drive and the internal PLC program by setting the drive and internal PLC program to two different station numbers. For example, if user wants to set AC motor drive as station 1 and PLC as station 2, please write following setting to the host controller:
When setting 01(Station) 03(Read) 0400(Address) 0001(1 data), the host controller can read the Pr.04-00 from the AC motor drive.
When setting 02(Station) 03(Read) 0400(Address) 0001(1 data), host controller will read X0 data from the internal PLC program.
4. The internal PLC program will stop operation when upload/download programs.
5. When using WPR command to write parameters, parameters can be changed for a maximum of 10^{9} times. It is crucial not to exceed this limit to prevent occurrence of serious error. Number of calculations based on the value is changed. If the values which to be written is same as present data, the number does not add up. If the value to be written is different, the number calculated will be "plus-one."
6. When Pr.00-04 is set to 28, D1043 value of PLC register will be displayed on the digital keypad:

Digital Keypad KPC-CC01
Display range: 0~65535

Digital Keypad KPC-CE01
Display range: 0~9999

$[9990$

Display for values exceed 9999
[1000
7. When PLC is in PLC Run or PLC Stop mode, Pr.00-02 (settings 9 and 10) are disabled.
8. When Pr.00-02 is set to 6, PLC function settings will return to factory settings.
9. When the Input Terminal X of PLC is programmed, the corresponding MI will be disabled (no function).
10. When AC motor drive operation status is controlled by PLC function, the setting of Pr.00-21 has no function and the drive is fully under the control of PLC function.
11. When PLC function is programmed with FREQ command, AC motor drive frequency is now under PLC function control. The setting of Pr.00-20 and Hand ON/OFF are disabled and has no control over AC motor drive frequency.
12. When PLC is programmed with TORQ command, AC motor drive torque is now under PLC function control. The setting of Pr.11-33 and Hand ON/OFF function are disabled and has no control over AC motor drive torque.
13. When PLC is programmed with POS command, AC motor drive position is now under PLC function control. The setting of Pr.11-40 and Hand ON/OFF function are disabled and has no control over AC motor drive position.
14. If the Stop function of digital keypad is enabled when AC motor drive frequency is under PLC function control, the AC motor drive will trigger FStP error and AC motor drive will stop operation.

17.3 Start-up

17.3.1 The Steps for PLC Execution

Please operate PLC functions by following the steps indicate below:

1. Press menu key on KPC-CC01 \rightarrow select 3: PLC \rightarrow ENTER.

\square NOTE
When using KPC-CE01 series digital keypad, switch the mode to PLC2 for program download/upload:
A. Press MODE key and select 'PLC'.
B. Press 'UP' key and look for 'PLC2' then press 'ENTER'.
C. If succeed, display 'END' for one to two seconds and return to 'PLC2' page.

The PLC warning that is displayed before program downloaded to C2000 can be ignored, please continue the operation.
OLF
Disable
FiLi
Run PLC

PLC Stop
2. Connection: Connect RJ-45 of AC motor drive to the computer by using RS485.

C2000
3. Run the program.

PLC

- 1.Disable
2.PLC Run
3.PLC Stop

■ PLC function, select function 2 (PLC Run).
1: Disable (PLCO)
2: PLC Run (PLC1)
3: PLC Stop (PLC2)
Optional accessories: Digital keypad KPC-CE01, display PLC function as shown in the ().
When external input terminals (MI1~MI8) are set to PLC Mode select bit0 (51) or PLC Mode select bit1 (52), it will force to switch to PLC mode regardless the terminal is ON or OFF. Meanwhile, switching via keypad is disabled. Please refer to the chart below:

PLC Mode	PLC Mode select bit1(52)	PLC Mode select bit0 (51)
Disable (PLC 0)	OFF	OFF
PLC Run (PLC 1)	OFF	ON
PLC Stop (PLC 2)	ON	OFF
Previous state	ON	ON

When KPC-CE01 execute PLC function:

1. When switching the page from PLC to PLC1, it will execute PLC. The motion of PLC (Execute/Stop) is controlled by WPL editor.
2. When switching the page from PLC to PLC2, it will stop PLC. Again the motion of PLC (Execute/Stop) is controlled by WPL editor.
3. The control of external terminals follows the same method.

NOTE

When input/output terminals (FWD REV MI1~MI8 MI10~15, Relay1, Relay2 RY10~RY15, MO1~MO2 MO10~MO11,) are used in PLC program, they cannot be used in other places. Fro example, when PLC program (PLC1 or PLC2) is activated, such as when it controls Y0, the corresponding output terminals Relay (RA/RB/RC) will be used. At this moment, Pr. 03.00 setting will be invalid since the terminal has been used by PLC. Refer to Pr.02-52, 02-53, 03-30 to check which DI DO AO are occupied by PLC.

17.3.2 I/O Device Reference Table

Input device:

Device	X0	X1	X2	X3	X4	X5	X6	X7	X10	X11	X12	X13	X14	X15	X16	X17
$\mathbf{1}$	FWD	REV	MI1	MI2	MI3	MI4	MI5	MI6	MI7	MI8						
$\mathbf{2}$											MI10	MI11	MI12	MI13	MI14	MI15
$\mathbf{3}$											MI10	MI11	MI12	MI13		

1: I/O extension card
2: I/O extension card EMC-D611A (D1022=4)
3: I/O extension card EMC-D42A (D1022=5)

Output device:

Device	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y10	Y11	Y12	Y13	Y14	Y15	Y16	Y17
1	RY 1	RY2		MO1	MO2											
2						MO10	MO11									
3						RY10	RY11	RY12	RY13	RY14	RY15					

1: I/O extension card
2: I/O extension card EMC-D42A (D1022=5)
3: I/O extension card EMC-R6AA (D1022=6)

17.3.3 WPLSoft Installation

Download PLC program toC2000: Refer to D. 3 to D. 7 for program coding and download the editor (WPLSoft V2.09) at DELTA website http://www.delta.com.tw/industrialautomation/

17.3.4 Program Input

17.3.5 Program Download

Please download the program by following steps:

Step 1. Press cove button for compiler after inputting program in WPLSoft.

Step 2. After compiler is finished, choose the item "Write to PLC" in the communication items.
After finishing Step 2, the program will be downloaded from WPLSoft to the AC motor drive by the communication format.

17.3.6 Program Monitor

If you execute "start monitor" in the communication item during executing PLC, the ladder diagram will be shown as follows.

17.4 Ladder Diagram

17.4.1 Program Scan Chart of the PLC Ladder Diagram

Calculate the result by ladder diagram algorithm (it doesn't sent to the outer output point but the inner equipment will output immediately.)

Repeats the execution in cycle.

17.4.2 Ladder Diagram

Ladder diagram is a diagram language that applied on the automatic control and it is also a diagram that made up of the symbols of electric control circuit. PLC procedures are finished after ladder diagram editor edits the ladder diagram. It is easy to understand the control flow that indicated with diagram and also accept by technical staff of electric control circuit. Many basic symbols and motions of ladder diagram are the same as mechanical and electrical equipments of traditional automatic power panel, such as button, switch, relay, timer, counter and etc.

The kinds and amounts of PLC internal equipment will be different with brands. Although internal equipment has the name of traditional electric control circuit, such as relay, coil and contact. It doesn't have the real components in it. In PLC, it just has a basic unit of internal memory. If this bit is 1 , it means the coil is ON and if this bit is 0 , it means the coil is OFF. You should read the corresponding value of that bit when using contact (Normally Open, NO or contact a). Otherwise, you should read the opposite sate of corresponding value of that bit when using contact (Normally Closed, NC or contact b). Many relays will need many bits, such as 8 -bits makes up a byte. 2 bytes can make up a word. 2 words make up double word. When using many relays to do calculation, such as add/subtraction or shift, you could use byte, word or double word. Furthermore, the two equipments, timer and counter, in PLC not only have coil but also value of counting time and times.

In conclusion, each internal storage unit occupies fixed storage unit. When using these equipments, the corresponding content will be read by bit, byte or word.

Brief introduction to the internal devices of PLC:

Internal Device	Function
Input Relay	Input relay is the basic storage unit of internal memory that corresponds to external input point (it is the terminal that used to connect to external input switch and receive external input signal). Input signal from external will decide it to display 0 or 1 . You couldn't change the state of input relay by program design or forced ON/OFF via WPLSoft. The contacts (contact a, b) can be used unlimitedly. If there is no input signal, the corresponding input relay could be empty and can't be used with other functions. \square Equipment indication method: $\mathrm{X} 0, \mathrm{X} 1 \ldots \mathrm{X} 7, \mathrm{X} 10, \mathrm{X} 11 \ldots$ The symbol of equipment is X and numbering in octal.
Output Relay	Output relay is the basic storage unit of internal memory that corresponds to external output point (it is used to connect to external load). It can be driven by input relay contact, the contact of other internal equipment and itself contact. It uses a normally open contact to connect to external load and other contacts can be used unlimitedly as input contacts. It doesn't have the corresponding output relay, if need, it can be used as internal relay. ■ Equipment indication: $\mathrm{Y} 0, \mathrm{Y} 1 \ldots \mathrm{Y} 7, \mathrm{Y} 10, \mathrm{Y} 11 \ldots$ The symbol of equipment is Y and numbering in octal.
Internal Relay	The internal relay doesn't connect directly to outside. It is an auxiliary relay in PLC. Its function is the same as the auxiliary relay in electric control circuit. Each auxiliary relay has the corresponding basic unit. It can be driven by the contact of input relay, output relay or other internal equipment. Its contacts can be used unlimitedly. Internal auxiliary relay can't output directly, it should output with output point. - Equipment indication: M0, M1...M799. The symbol of equipment is M and numbering in decimal system.
Counter	Counter is used to count. It needs to set counter before using counter (i.e. the pulse of counter). There are coil, contacts and storage unit of counter in counter. When coil is from OFF to ON, that means input a pulse in counter and the counter should add 1 . There are 17-bit, 32-bit and high-speed counter for user to use. Equipment indication: C0, C1... C79. The symbol of equipment is C and numbering in decimal system.
Timer	Timer is used to control time. There are coil, contact and timer storage. When coil is ON , its contact will act (contact a is close, contact b is open) when attaining desired time. The time value of timer is set by settings and each timer has its regular period. User sets the timer value and each timer has its timing period. Once the coil is OFF, the contact won't act (contact a is open and contact b is close) and the timer will be set to zero. ■ Equipment indication: T0, T1...T159. The symbol of equipment is T and numbering in decimal system. The different number range corresponds with the different timing period.

PLC needs to handle data and operation when controlling each order, timer value and counter value. The data register is used to store data or parameters. It stores

Data register 16 -bit binary number, i.e. a word, in each register. It uses two continuous number of data register to store double words.
■ Equipment indication: D0, D1,...,D399. The symbol of equipment is D and numbering in decimal system.

The structure of ladder diagram and information:

Ladder Diagram Structure	Explanation	Command	Device
$\longmapsto \vdash$	Normally open, contact a	LD	X, Y, M, T, C
\square	Normally closed, contact b	LDI	X, Y, M, T, C
- $\longmapsto \longmapsto ~-~$	Serial normally open	AND	X, Y, M, T, C
	Parallel normally open	OR	X, Y, M, T, C
$\xrightarrow{+\square \longmapsto}$	Parallel normally closed	ORI	X, Y, M, T, C
	Rising-edge trigger switch	LDP	X, Y, M, T, C
$\|\downarrow\| \downarrow$	Falling-edge trigger switch	LDF	X, Y, M, T, C
$\dashv \vdash\|\uparrow\|$	Rising-edge trigger in serial	ANDP	X, Y, M, T, C
$\multimap \longmapsto \vdash \mid$	Falling-edge trigger in serial	ANDF	X, Y, M, T, C
	Rising-edge trigger in parallel	ORP	X, Y, M, T, C
	Falling-edge trigger in parallel	ORF	X, Y, M, T, C
	Block in serial	ANB	none
\square	Block in parallel	ORB	none

Ladder Diagram Structure	Explanation	Command	Device
	Multiple output	MPS MRD MPP	none
	Output command of coil drive	OUT	Y, M
	Basic command, Application command	Basic command/ Application command	
	Inverse logic	INV	none

17.4.3 The Edition of PLC Ladder Diagram

The program edited method is from left power line to right power line. (The right power line will be omitted during the edited of WPLSoft.) After editing a row, go to editing the next row. The maximum contacts in a row are 11 contacts. If you need more than 11 contacts, you could have the new row and start with continuous line to continue more input devices. The continuous number will be produced automatically and the same input point can be used repeatedly. The drawing is shown as follows.

The operation of ladder diagram is to scan from left upper corner to right lower corner. The output handling, including the operation frame of coil and application command, at the most right side in ladder diagram.

Take the following diagram for example; we analyze the process step by step. The number at the right corner is the explanation order.

The explanation of command order:

1	LD	X0
2	OR	M0
3	AND	X1
4	LD	X3
	AND	M1

5 LD Y1
AND X4
6 LD T0
AND M3
ORB
$7 \quad$ ANB
8 OUT Y1
TMR TO
K10
The detail explanation of basic structure of ladder diagram

1. LD (LDI) command: give the command LD or LDI in the start of a block.

The structures of command LDP and LDF are similar to the command LD. The difference is that command LDP and LDF will act in the rising-edge or falling-edge when contact is ON as shown in the following.

2. AND (ANI) command: single device connects to a device or a block in series.

The structures of ANDP and ANDF are the same but the action is in rising-edge or falling-edge.
3. OR (ORI) command: single device connects to a device or a block.

The structures of ORP and ORF are the same but the action is in rising-edge or falling-edge.
4. ANB command: a block connects to a device or a block in series.

5. ORB command: a block connects to a device or a block in parallel.

If there are several blocks when operate ANB or ORB, they should be combined to blocks or network from up to down or from left to right.
6. MPS, MRD, MPP commands: Divergent memory of multi-output. It can produce many various outputs.
7. The command MPS is the start of divergent point. The divergent point means the connection place between horizontal line and vertical line. We should determine to have contact memory command or not according to the contacts status in the same vertical line. Basically, each contact could have memory command but in some places of ladder diagram conversion will be omitted due to the PLC operation convenience and capacity limit. MPS command can be used for 8 continuous times and you can recognize this command by the symbol " \rceil ".
8. MRD command is used to read memory of divergent point. Because the logical status is the same in the same horizontal line, it needs to read the status of original contact to keep on analyzing other ladder diagram. You can recognize the command MRD by the symbol " F ".
9. MPP command is used to read the start status of the top level and pop it out from stack. Because it is the last item of the horizontal line, it means the status of this horizontal line is ending.

17.4.4 The Example for Designing Basic Program

Start, Stop and Latching

In the same occasions, it needs transient close button and transient open button to be start and stop switch. Therefore, if you want to keep the action, you should design latching circuit. There are several latching circuits in the following:

Example 1: the latching circuit for priority of stop

When start normally open contact $\mathrm{X} 1=\mathrm{On}$, stop normally contact $\mathrm{X} 2=\mathrm{Off}$, and $\mathrm{Y} 1=\mathrm{On}$ are set at the same time, if $\mathrm{X} 2=\mathrm{On}$, the coil Y 1 will stop acting. Therefore, it calls priority of stop.

Example 2: the latching circuit for priority of start

When start normally open contact $\mathrm{X} 1=\mathrm{On}$, stop normally contact $\mathrm{X} 2=\mathrm{Off}$ and $\mathrm{Y} 1=\mathrm{On}$ (coil Y1 will be active and latching) are valid at the same time, if $\mathrm{X} 2=\mathrm{On}$, coil Y 1 will be active due to latched contact. Therefore, it calls priority of start.

Example 3: the latching circuit of SET and RST commands

The figure at the right side is latching circuit that made up of RST and SET command. It is top priority of stop when RST command is set behind SET command. When executing PLC from up to down, The coil Y1 is ON and coil Y 1 will be OFF when X 1 and X2 act at the same time, therefore it calls priority of stop.
It is top priority of start when SET command is set after RST command. When X1 and X 2 act at the same time, Y 1 is ON so it calls top priority of start.

Top priority of stop

Top priority of start

The common control circuit

Example 4: condition control

X 1 and X 3 can start/stop Y 1 separately, X 2 and X 4 can start/stop Y 2 separately and they are all self latched circuit. Y 1 is an element for Y 2 to do AND function due to the normally open contact connects to Y 2 in series. Therefore, Y 1 is the input of Y 2 and Y 2 is also the input of Y 1 .

Example 5: Interlock control

The figure above is the circuit of interlock control. Y1 and Y2 will act according to the start contact X1 and X2. Y1 and Y2 will act not at the same time, once one of them acts and the other won't act. (This is called interlock.) Even if X 1 and X 2 are valid at the same time, Y 1 and Y 2 won't act at the same time due to up-to-down scan of ladder diagram. For this ladder diagram, Y 1 has higher priority than Y 2 .

Example 6: Sequential Control

If add normally close contact Y 2 into Y 1 circuit to be an input for Y1 to do AND function. (as shown in the left side) Y 1 is an input of Y 2 and Y 2 can stop Y 1 after acting. In this way, Y 1 and Y 2 can execute in sequential.

Example 7: Oscillating Circuit

The period of oscillating circuit is $\Delta T+\Delta T$

Y1

The figure above is a very simple ladder step diagram. When starting to scan Y 1 normally close contact, Y 1 normally close contact is close due to the coil Y 1 is OFF. Then it will scan Y 1 and the coil Y 1 will be ON and output 1 . In the next scan period to scan normally close contact $\mathrm{Y} 1, \mathrm{Y} 1$ normally close contact will be open due to Y 1 is ON. Finally, coil Y 1 will be OFF. The result of repeated scan, coil Y will output the vibrating pulse with cycle time ΔT (On) $+\Delta T$ (Off).

The vibrating circuitry of cycle time $\Delta T(O n)+\Delta T$ (Off):

The figure above uses timer T0 to control coil Y 1 to be ON. After Y 1 is ON , timer T 0 will be closed at the next scan period and output Y 1 . The oscillating circuit will be shown as above. (n is the setting of timer and it is decimal number. T is the base of timer. (clock period))

Example 8: Blinking Circuit

The figure above is common used oscillating circuit for indication light blinks or buzzer alarms. It uses two timers to control On/OFF time of Y1 coil. If figure, n 1 and n 2 are timer setting of T1 and T2. T is the base of timer (clock period)

Example 9: Triggered Circuit

In figure above, the rising-edge differential command of XO will make coil MO to have a single pulse of ΔT (a scan time). Y1 will be ON during this scan time. In the next scan time, coil M0 will be OFF, normally close M0 and normally close Y 1 are all closed. However, coil Y 1 will keep on being ON and it will make coil Y1 to be OFF once a rising-edge comes after input X0 and coil M0 is ON for a scan time. The timing chart is as shown above. This circuit usually executes alternate two actions with an input. From above timing: when input XO is a square wave of a period T , output coil Y 1 is square wave of a period 2T.

Example 10: Delay Circuit

When input X 0 is ON , output coil Y 1 will be ON at the same time due to the corresponding normally close contact OFF makes timer T10 to be OFF. Output coil Y1 will be OFF after delaying 100 seconds (K1000*0.1 seconds $=100$ seconds) once input X0 is OFF and T10 is ON. Please refer to timing chart above.

Example 11: Output delay circuit, in the following example, the circuit is made up of two timers.

No matter input X 0 is ON or OFF , output Y 4 will be delay.

Example12: Extend Timer Circuit

In this circuit, the total delay time from input X 0 is close and output Y 1 is $\mathrm{ON}=(\mathrm{n} 1+\mathrm{n} 2)^{*} \mathrm{~T}$. where T is clock period. Timer: T11, T12; Timer cycle: T.

17.5 PLC Devices Function

Items	Specifications	Remarks					
Control Method	Stored program, cyclic scan system	I/O refresh instruction is available					
I/O Processing Method	Batch processing (when END instruction is executed)	Basic commands (minimum 0.24 us)					
Explication commands (1 ~							
dozens us)			$	$	Program Language	Instruction, Ladder Logic, SFC	
:---	:---	:---					
Program Capacity	1000 STEPS	30 basic commands 50 application commands					
Commands	80 commands						
Input/Output Contact	Input (X): 10, output (Y): 4						

	Device	Item		Range		Function
	X	External Input Relay		X0~X17, 16 points, octal number system	Total is 32 points	Correspond to external input point
	Y	External Output Relay		Y0~Y17, 16 points, octal number system		Correspond to external output point
	M	Auxiliary	For general	M0~M799, 800 points	Total is 192 points	Contacts can switch to On/Off in program
			For special	$\begin{aligned} & \text { M1000~M1079, } 80 \\ & \text { points } \end{aligned}$		
	T	Timer	100ms timer	T0~T159, 160 points	Total is 16 points	When the timer indicated by TMR command attains the setting, the T contact with the same number will be On.
	C	Counter	16-bit count up for general	C0~C79, 80 points	Total is 80 points	When the counter indicated by CNT command attains the setting, the C contact with the same number will be On.
	T	Present value of timer		T0~T15, 160 points		When timer attains, the contact of timer will be On.
	C	Present value of counter		C0~C79, 16-bit counter, 80 points		When timer attains, the contact of timer will be On.
	D	Data register	For latched	D0~D399, 400 points	Total is 1300 points	It can be memory area for storing data.
			For general	$\begin{aligned} & \text { D1000~D1099, } 100 \\ & \text { points } \end{aligned}$		
			For special	$\begin{aligned} & \text { D2000~D2799, } 800 \\ & \text { points } \end{aligned}$		
	K	Decimal		K-32,768 ~ K32,767 (16-bit operation)		
	H	Hexadecimal		H0000 ~ HFFFF (16-bit operation)		
Communication port (program read/write)				RS485 (slave)		
Analog input/output				Built-in 2 analog inputs and 1 analog output		
Function extension module (optional)				EMC-D42A; EMC-R6AA; EMCD611A		

17.5.1 Devices Functions

The Function of Input/output Contacts

The function of input contact X : input contact X reads input signal and enter PLC by connecting with input equipment. It is unlimited usage times for contact A or contact B of each input contact X in program. The On/Off of input contact X can be changed with the On/Off of input equipment but can't be changed by using peripheral equipment (WPLSoft).

The Function of Output Contact Y

The mission of output contact Y is to drive the load that connects to output contact Y by sending On/Off signal. There are two kinds of output contact: one is relay and the other is transistor. It is unlimited usage times for A or B contact of each output contact Y in program. But there is number for output coil Y and it is recommended to use one time in program. Otherwise, the output result will be decided by the circuit of last output Y with PLC program scan method.

The output of Y 0 will be decided by circuit 2 , i.e. decided by $O n / O f f$ of X10.

Value, Constant [K] / [H]

Constant	K	Decimal	K-32,768 ~ K32,767 (16-bit operation)
	H	Hexadecimal	H0000 ~ HFFFF (16-bit operation)

There are five value types for DVP-PLC to use by the different control destination. The following is the explanation of value types.
Binary Number (BIN)
It uses binary system for the PLC internal operation or storage. The relative information of binary system is in the following.

Bit	Bit is the basic unit of binary system, the status are 1 or 0.
Nibble	It is made up of continuous 4 bits, such as b3~b0. It can be used to represent number 0~9 of decimal or 0~F of hexadecimal.
Byte	It is made up of continuous 2 nibbles, i.e. 8 bits, b7~b0. It can used to represent $00 \sim$ FF of hexadecimal system.
Word	It is made up of continuous 2 bytes, i.e. 16-bit, b15~b0. It can used to represent $0000 \sim$ FFFF of hexadecimal system.
Double Word	It is made up of continuous 2 words, i.e. 32-bit, b31~b0. It can used to represent $00000000 \sim$ FFFFFFFF of hexadecimal system.

The relations among bit, nibble, byte, word, and double word of binary number are shown as follows.

> Octal Number (OCT)
The numbers of external input and output terminal of DVP-PLC use octal number.
Example:
External input: $\mathrm{X} 0 \sim \mathrm{X} 7, \mathrm{X} 10 \sim \mathrm{X} 17 \ldots$ (device number)
External output: Y0~Y7, Y10~Y17... (device number)
> Decimal Number, DEC
The suitable time for decimal number to be used in DVP-PLC system.
\boxtimes To be the setting value of timer T or counter C , such as TMR C0 K50. (K constant)
\checkmark To be the device number of M, T, C and D. For example: M10, T30. (device number)
ஏ To be operand in application command, such as MOV K123 D0. (K constant)
> Binary Code Decimal (BCD)
It shows a decimal number by a unit number or four bits so continuous 16-bit can use to represent the four numbers of decimal number. BCD code is usually used to read the input value of DIP switch or output value to 7 -segment display to be display.
> Hexadecimal Number (HEX)
The suitable time for hexadecimal number to be used in DVP-PLC system.
\checkmark To be operand in application command. For example: MOV H1A2B D0. (constant H)
$>$ Constant K :
In PLC, it is usually have K before constant to mean decimal number. For example, K100 means 100 in decimal number.
Exception: The value that is made up of K and bit equipment X, Y, M, S will be bit, byte, word or double word. For example, K2Y10, K4M100. K1 means a 4-bit data and K2~K4 can be 8, 12 and 16-bit data separately.
> Constant H :
In PLC, it is usually have H before constant to mean hexadecimal number. For example, H 100 means 100 in hexadecimal number.

The Function of Auxiliary Relay

There are output coil and A, B contacts in auxiliary relay M and output relay Y . It is unlimited usage times in program. User can control loop by using auxiliary relay, but can't drive external load directly. There are two types divided by its characteristics.
1.Auxiliary relay for general : It will reset to Off when power loss during running. Its state will be Off when power on after power loss.
2.Auxiliary relay for special : Each special auxiliary relay has its special function.

Please don't use undefined auxiliary relay.

The Function of Timer

The unit of timer is $1 \mathrm{~ms}, 10 \mathrm{~ms}$ and 100 ms . The count method is count up. The output coil will be On when the present value of timer equals to the settings. The setting is K in decimal number. Data register D can be also used as settings.

- The real setting time of timer $=$ unit of timer * settings

The Features and Functions of Counter

Item	16-bit counters	32-bit counters
Type	General	General High speed
Count direction	Count up	Count up/down
Settings	0~32,767	-2,147,483,648~+2,147,483,647
Designate for constant	Constant K or data register D	Constant K or data register D (2 for designated)
Present value change	Counter will stop when attaining settings	Counter will keep on counting when attaining settings
Output contact	When count attains the settings value, contact will be On and latched.	When count up attains settings, contact will be On and latched. When count down attains settings, contact will reset to Off.
Reset action	The present value will reset to 0 when RST command is executed and contact will reset to Off.	
Present register	16-bit	32-bit
Contact action	After scanning, act together.	After scanning, act together. Act immediately when count attains. It has no relation with scan period.

Functions:

When pulse input signal of counter is from Off to On, the present value of counter equals to settings and output coil is On. Settings are decimal system and data register D can also be used as settings. 16-bit counters C0~C79:
$\checkmark \quad$ Setting range of 16 -bit counter is $\mathrm{K} 0 \sim \mathrm{~K} 32$, 767 . (K 0 is the same as K 1 . output contact will be On immediately at the first count.
\square General counter will be clear when PLC is power loss. If counter is latched, it will remember the value before power loss and keep on counting when power on after power loss.
\checkmark If using MOV command, WPLSoft to send a value, which is large than setting to C0, register, at the next time that X 1 is from Off to On, C 0 counter contact will be On and present value will be set to the same as settings.
$\square \quad$ The setting of counter can use constant K or register D (not includes special data register D1000~D1044) to be indirect setting.
\boxtimes If using constant K to be setting, it can only be positive number but if setting is data register D, it can be positive/negative number. The next number that counter counts up from 32,767 is -32,768.

Example:

LD RST	$\begin{aligned} & \mathrm{X0} \\ & \mathrm{C0} \\ & \mathrm{X} 1 \end{aligned}$		RST	C0	
LD		X1			
CNT	C0 K5		CNT	C0	K5
LD	C0	co			
OUT	YO				

1. When $\mathrm{XO}=\mathrm{On}$, RST command is executed, C0 reset to 0 and output contact reset to Off.
2. When X1 is from Off to On, counter will count up (add 1).
3. When counter CO attains settings $\mathrm{K} 5, \mathrm{C} 0$ contact is On and $\mathrm{C} 0=$ setting $=\mathrm{K} 5$. C0 won't accept X1 trigger signal and C0 remains K5.

17.5.2 Special Auxiliary Relays

Special M	Function	Read(R)/ Write(W)
M1000	Normally open contact (a contact). This contact is On when running and it is On when the status is set to RUN.	Read only
M1001	Normally closed contact (b contact). This contact is Off when running and it is Off when the status is set to RUN.	Read only
M1002	On only for 1 scan after RUN. Initial pulse is contact a. It will get positive pulse in the RUN moment. Pulse width=scan period.	Read only
M1003	Off only for 1 scan after RUN. Initial pulse is contact a. It will get negative pulse in the RUN moment. Pulse width=scan period.	Read only
M1004	Reserved	-
M1005	Fault indication of the AC motor drives	Read only
M1006	Output frequency is $0, \mathrm{M} 1006$ On	Read only
M1007	Operation direction of AC motor drives (FWD: M1007 Off, REV: M1007On)	Read only
M1008 \sim M1010	Reserved	-
M1011	10 ms clock pulse, 5 ms On/5ms Off	Read only
M1012	100ms clock pulse, $50 \mathrm{~ms} \mathrm{On} / 50 \mathrm{~ms} \mathrm{Off}$	Read only
M1013	1s clock pulse, 0.5 s On / 0.5s Off	Read only
M1014	1min clock pulse, 30s On / 30s Off	Read only

Special M	Function	Read(R)/ Write(W)
M1015	Frequency attained, M1015=On	Read only
M1016	Parameter read/write error, M1016=On	Read only
M1017	Succeed to write parameter, M1017 =On	Read only
M1018	Reserved	-
M1019	Reserved	-
M1020	Zero flag	Read only
M1021	Borrow flag	Read only
M1022	Carry flag	Read only
M1023	Divisor is 0	Read only
M1024	Reserved	-
M1025	RUN(ON) / STOP(OFF) the AC motor drive	Read/Write
M1026	The operation direction of the AC motor drive (FWD: OFF, REV: ON)	Read/Write
M1027	AC motor drive reset	Read/Write
M1028	Reserved	-
M1029	Reserved	-
M1030	Reserved	-
M1031	The enforced integral value of PID is D1019	Read/Write
M1032	Reserved	-
M1033	Reserved	-
M1034	Enable CANopen real time control	Read/Write
M1035	Enable internal communication control	Read/Write
	Reserved	-
M1038	Start counting MI8	Read/Write
M1039	Reset MI8 counting value	Read/Write
M1040	Power On	Read/Write
M1041	Reserved	-
M1042	Quick stop	Read/Write
M1043	Reserved	-
M1044	Halt	Read/Write
M1045 M1047	Reserved	-
M1048	New position	Read/Write
M1049	Reserved	-
M1050	Absolute position/Relatvie position(0: Relative/1:Absolute)	Read/Write
M1051	Reserved	-
M1052	Freuqency Lock	Read/Write
M1053	Reserved	-
M1054	Enforced to reset the absolute position	

Special M	Function	Read(R)/ Write(W)
M1055	Home	Read/Write
M1056	Power on ready	Read only
M1057	Reserved	-
M1058	On quick stopping	Read only
M1059	CANopen master setting complete	Read only
M1060	Initializing CANopen slave	Read only
M1061	Initialize CANopen slave failed	Read only
M1062	Reserved	-
M1063	Target torque attained	Read only
M1064	Target position attained	Read only
M1065	Reserved	Read only
M1066	Read/ Write CANopen data complete	Read only
M1067	Read/ Write CANopen data suceed	Read only
M1068	Calendare calculation error	-
M1069	Reserved	-
M1070	Homing complete	Read only
M1071	Home error	Read only
M1072 M1075	Reserved	-
M1076	Calendar time error or overtime updating	Read only
M1077	485 Reading \& Writing done	Read only
M1078	485 Reading \& Writing error	Read only
M1079	485 communication overtime	Read only

17.5.3 Special Registers

Special D	Function	Read(R)/ Write(W)
D1000	Reserved	-
D1001	PLC firmware version	Read only
D1002	Program capacity	Read only
D1003	Checksum	Read only
D1004	Reserved	-
D1009		Read only
D1010	Present scan time (Unit: 0.1 ms$)$	Read only
D1011	Minimum scan time (Unit: 0.1 ms$)$	Read only
D1012	Maximum scan time (Unit: 0.1 ms$)$	
D1013	Reserved	Read only
D1019		
D1020	Output frequency $(0.000 \sim 600.00 \mathrm{~Hz})$	

Special D	Function	Read(R)/ Write(W)
D1021	Output current (\#\#\#\#.\#A)	Read only
D1022	The ID of the extension card: 0 : no card 1: Relay Card(6 out) 2: I/O Card (4 in 2 out) 3~7: Reserved	Read only
D1023	The ID of the extension card: 0 : no card 1: DeviceNet Slave 2: Profibus-DP Slave 3: CANopen Slave 4: Modbus-TCP Slave 5: EtherNet/IP Slave 6~8: Reserved	Read only
$\begin{aligned} & \text { D1024 } \\ & \text { D1026 } \end{aligned}$	Reserved	-
D1027	Frequency command of the PID control	Read only
D1028	The responsive value of AUI AVI (analog voltage input) (0.00~100.00\%)	Read only
D1029	The responsive value of AUI ACI (analog current input) (0.0~100.00\%)	Read only
D1030	The corresponding value for AUI (-100.0~100.00\%)	Read only
$\begin{aligned} & \text { D1031 } \\ & \text { D1035 } \end{aligned}$	Reserved	-
D1036	AC motor drive error code	Read only
D1037	AC motor drive output frequency	Read only
D1038	DC Bus voltage	Read only
D1039	Output voltage	Read only
D1040	Analog output value AFM1 (-100.00~100.00\%)	Read/Write
$\begin{aligned} & \text { D1041 } \\ & \text { D1042 } \end{aligned}$	Reserved	-
D1043	User defined (When Pr. 00.04 is set to 28 , the register data will be displayed as Cxx)	Read/Write
D1044	Reserved	-
D1045	Analog output value AFM2 (-100.00~100.00\%)	Read/Write
$\begin{aligned} & \text { D1046 } \\ & \text { D1049 } \end{aligned}$	Reserved	-
D1050	Actual mode 0: Velocity mode 1: Position mode 2: Torque mode 3: Homing mode	Read only
$\begin{aligned} & \text { D1051 } \\ & \text { D1052 } \end{aligned}$	Reserved	-
D1053	Actual torque	Read only
D1054	Present count value of MI8(L word)	
D1055	Present count value of MI8 (H word)	

Special D	Function	$\operatorname{Read}(\mathrm{R}) /$ Write(W)
$\begin{aligned} & \text { D1056 } \\ & \text { D1059 } \end{aligned}$	Reserved	Read only
D1060	Mode setting 0: Speed Mode 1: Position Mode 2: Torque Mode 3: Homing Mode	Read/Write
$\begin{aligned} & \text { D1061 } \\ & \text { D1069 } \end{aligned}$	Reserved	Read/Write
D1100	Tartget frequency	Read only
D1101	Target frequency (operating)	Read only
D1102	Reference frequency	Read only
D1103	Target position L	Read only
D1104	Target position H	Read only
D1105	Target torque	Read only
D1106	-	-
D1107	-	-
D1108	-	-
D1109	Random value	Read only
D1110	Number of internal communication nodes	RW
D1111	-	-
D1112	-	-
D1113	-	-
D1114	-	-
D1115	Synchronous time cycle of internal communication	Read only
D1116	Internal communication node error	Read only
D1117	Corresponding on-line bit of internal communication node	Read only
D1118	-	-
D1119	Random value	Read only
D1120	Control command of internal communication node 0	Read/Write
D1121	Mode of internal communication node 0	Read/Write
D1122	Reference command L of internal communication node 0	Read/Write
D1123	Referenc command H of internal communication node 0	Read/Write
D1124	-	-
D1125	-	-
D1126	Status of internal communication node 0	Read only
D1127	Reference status L of internal communication node 0	Read only
D1128	Reference status H of internal communication node 0	Read only
D1129	-	-
D1130	Control command of internal communication node 1	Read/Write
D1131	Mode of internal communication node 1	Read/Write
D1132	Reference command L of internal communication node 1	Read/Write
D1133	Referenc command H of internal communication node 1	Read/Write
D1134	-	-
D1135	-	-
D1136	Status of internal communication node 1	Read only
D1137	Reference status L of internal communication node 1	Read only
D1138	Reference status H of internal communication node 1	Read only
D1139	-	-
D1140	Control command of internal communication node 2	Read/Write
D1141	Mode of internal communication node 2	Read/Write
D1142	Reference command L of internal communication node 2	Read/Write
D1143	Referenc command H of internal communication node 2	Read/Write

Special D	Function	Read(R)/ Write(W)
D1144	-	-
D1145	-	-
D1146	Status of internal communication node 2	Read only
D1147	Reference status L of internal communication node 2	Read only
D1148	Reference status H of internal communication node 2	Read only
D1149	-	-
D1150	Control command of internal communication node 3	Read/Write
D1151	Mode of internal communication node 3	Read/Write
D1152	Reference command L of internal communication node 3	Read/Write
D1153	Referenc command H of internal communication node 3	Read/Write
D1154	-	-
D1155	-	-
D1156	Status of internal communication node 3	Read only
D1157	Reference status L of internal communication node 3	Read only
D1158	Reference status H of internal communication node 3	Read only
D1159	-	-
D1160	Control command of internal communication node 4	Read/Write
D1161	Mode of internal communication node 4	Read/Write
D1162	Reference command L of internal communication node 4	Read/Write
D1163	Referenc command H of internal communication node 4	Read/Write
D1164	-	-
D1165	-	-
D1166	Status of internal communication node 4	Read only
D1167	Reference status L of internal communication node 4	Read only
D1168	Reference status H of internal communication node 4	Read only
D1169	-	-
D1170	Control command of internal communication node 5	Read/Write
D1171	Mode of internal communication node 5	Read/Write
D1172	Reference command L of internal communication node 5	Read/Write
D1173	Referenc command H of internal communication node 5	Read/Write
D1174	-	-
D1175	-	-
D1176	Status of internal communication node 5	Read only
D1177	Reference status L of internal communication node 5	Read only
D1178	Reference status H of internal communication node 5	Read only
D1179	-	
D1180	Control command of internal communication node 6	Read/Write
D1181	Mode of internal communication node 6	Read/Write
D1182	Reference command L of internal communication node 6	Read/Write
D1183	Referenc command H of internal communication node 6	Read/Write
D1184	-	
D1185	-	-
D1186	Status of internal communication node 6	Read only
D1187	Reference status L of internal communication node 6	Read only
D1188	Reference status H of internal communication node 6	Read only
D1189	-	
D1190	Control command of internal communication node 7	Read/Write
D1191	Mode of internal communication node 7	Read/Write
D1192	Reference command L of internal communication node 7	Read/Write
D1193	Referenc command H of internal communication node 7	Read/Write
D1194	-	-
D1195	-	-
D1196	Status of internal communication node 7	Read only
D1197	Reference status L of internal communication node 7	Read only

Special D	Function	Read(R)/ Write(W)
D1198	Reference status H of internal communication node 7	Read only
D1199	-	Read only

CANopen Master Special D (Special D can be written only when PLC is at STOP)

$$
n=0 \sim 7
$$

Special D	Function	$\begin{aligned} & \text { PDO } \\ & \text { Map } \end{aligned}$	Power Failure Memor y	Factory Setting	R/W
D1070	The station which completed CANopen initialization (bit0=Machine code0)	NO	NO	0	R
D1071	The station which error occurs during CANopen initialization (bit0=Machine code0)	NO	NO	0	R
D1072	Reserved	-	-		-
D1073	CANopen station cut off (bit0=Machine code0)	NO	NO		R
D1074	Error code of master error 0: no error 1: slave setting error 2: synchronous cycle setting error (the setting is too low)	NO	NO	0	R
D1075	Reserved	-	-		-
D1076	SDO fault (main index value)	NO	NO		R
D1077	SDO fault (sub-index value)	NO	NO		R
D1078	SDO fault (error code L)	NO	NO		R
D1079	SDO fault (error code H)	NO	NO		R
D1080	Reserved	-	-		-
$\begin{gathered} \text { D1081 } \\ \underset{\sim}{\text { D1086 }} \end{gathered}$	Reserved	NO	NO		R
$\begin{gathered} \text { D1087 } \\ \text { D1089 } \end{gathered}$	Reserved	-	-		-
D1090	Synchronous cycle setting	NO	YES	4	RW
D1091	The station for initialization during initializing process.	NO	YES	FFFFH	RW
D1092	Delay time before initializing	NO	YES	0	RW
D1093	Break off detection time	NO	YES	1000ms	RW
D1094	Times of Break off detection	NO	YES	3	RW
$\begin{gathered} \text { D1095 } \\ \tilde{\sim} \\ \text { D1096 } \end{gathered}$	Reserved	-	-		-
D1097	Type of P to P send (PDO) Setting range: 1~240	NO	YES	1	RW
D1098	Type of P to P received (PDO) Setting range: 1~240	NO	YES	1	RW
D1099	Delay time of initialization complete Setting range: 1~60000 sec.	NO	YES	15 sec	RW

| Special D | Function | PDO
 Map | Power
 Failure
 Memor
 Factory | Setting |
| :---: | :--- | :---: | :---: | :---: | :---: | R/W

C2000 supports up to 8 CANopen protocol slaves; each slave occupies 100 of special D register and is numbered in $1 \sim 8$. There are in total of 8 stations.

Slave No.	Slave No. 1	$\begin{gathered} \text { D2000 } \\ \text { D2001 } \\ \sim \\ \text { D2099 } \end{gathered}$	Station number Factory code(L) Mapping address $4(\mathrm{H})$ of receiving station
	Slave No. 2	D2100	Station number
		D2101	Factory code(L)
		~	
		D2199	Mapping address 4(H) of receiving station 4
	Slave No. 3	D2200	Station number
		D2201	Factory code(L)
		~	~
		D2299	Mapping address $4(\mathrm{H})$ of receiving station
		$\sqrt{3}$	
	Slave No. 8	D2700	Station number
		D2701	Factory code(L)
		~	
		D2799	Mapping address 4(H)of receiving station

Slave No. 0~7

- : PDOTX, A: PDORX, \square : To upate by a CANFLS command

Special D	Function	Pre-defined setting	R/W
D2000+100*n	Station number of slave No. n Setting range: 0~127 0 : CANopen disable	0	RW
D2001+100*n	The category of slave No. n 192H: AC motor drive/ AC servo motor and drive 191H: remote I/O module	0	R
D2002+100*n	Factory code (L) of slave No. n	0	R
D2003+100*n	Factory code (H) of slave No. n	0	R
D2004+100*n	Factory product code (L) of slave No. n	0	R
D2005+100*n	Factory product code (H) of slave No. n	0	R

Basic definition

Special D	Function	Pre-defined setting	CAN Index	PDO				R/W
				1	2	3	4	
D2006+100*n	Treatment for slave No. n communication disconnect	0	6007H-0010H	-		-	-	RW
D2007+100*n	Error code of slave No. n	0	603FH-0010H	-		-	-	R
D2008+100*n	Control word of slave No. n	0	$6040 \mathrm{H}-0010 \mathrm{H}$					RW
D2009+100*n	Status word of slave No. n	0	$6041 \mathrm{H}-0010 \mathrm{H}$					R
D2010+100*n	Control mode of slave No. n	2	6060H-0008H					RW
D2011+100*n	Actual mode of slave No. n	2	$6061 \mathrm{H}-0008 \mathrm{H}$					R

Speed Control
Slave No. 0~7

Special D	Function	Pre-defined Setting	CAN Index	PDO				R/W
				1	2	3	4	
D2012+100*n	Target speed of slave No. n	0	6042H-0010H	-				RW
D2013+100*n	Actual speed of slave No. n	0	$6043 \mathrm{H}-0010 \mathrm{H}$	\bullet				R
D2014+100*n	Speed deviation of slave No. n	0	$6044 \mathrm{H}-0010 \mathrm{H}$					R
D2015+100*n	Accel. Time of slave No. n	1000	604FH-0020H					R
D2016+100*n	Decel. Time of slave No. n	1000	$6050 \mathrm{H}-0020 \mathrm{H}$					RW

Torque control
Slave No. 0~7

Special D	Function	Pre-defined Setting	CAN Index	PDO				R/W
				1	2	3	4	
D2017+100*n	Target torque of slave No. n	0	$6071 \mathrm{H}-0010 \mathrm{H}$				-	RW
D2018+100*n	Actual torque of slave No. n	0	$6077 \mathrm{H}-0010 \mathrm{H}$				-	R
D2019+100*n	Actual current of slave No. n	0	$6078 \mathrm{H}-0010 \mathrm{H}$					R

Position control
Slave No. 0~7

Special D	Function	Pre-defined Setting	CAN Index	PDO				R/W
				1	2	3	4	
D2020+100*n	Target position(L) of slave No. n	0	607AH-0020H		-			RW
D2021+100*n	Target position(H) of slave No. n	0						RW
D2022+100*n	Actual position(L) of slave No. n	0	6064H-0020H		\bullet			R
D2023+100*n	Actual position(H) of slave No. n	0						R
D2024+100*n	Speed diagram(L) of slave No. n	10000	$6081 \mathrm{H}-0020 \mathrm{H}$					RW
D2025+100*n	Speed diagram (H) of slave No. n	0						RW

20XXH address corresponds to MI MO AI AO.
Slave No. n=0~7

Special D	Function	Pre-defined Setting	CAN Index	PDO				R/W
				1	2	3	4	
D2026+100*n	MI status of slave No. n	0	$2026 \mathrm{H}-0110 \mathrm{H}$		-			RW
D2027+100*n	MO setting of slave No. n	0	$2026 \mathrm{H}-4110 \mathrm{H}$		-			RW
D2028+100*n	Al1 status of slave No. n	0	2026H-6110H		-			RW
D2029+100*n	Al2 status of slave No. n	0	2026H-6210H		-			RW
D2030+100*n	Al3 status of slave No. n	0	2026H-6310H		-			RW
D2031+100*n	AO1 status of slave No. n	0	2026H-A110H		-			RW
D2032+100*n	AO2 status of slave No. n	0	2026H-A210H		-			RW
D2033+100*n	AO3 status of slave No. n	0	2026H-A310H		-			RW

Setting of the PDO mapping length

Special D	Function	Pre-defined Setting	R/W
D2034+100*n	Transmission setting of slave No. n	000 AH	RW
D2067+100*n	Receiving setting of slave No. n	0000 H	RW

16.5.4 Communication Address for PLC Devices

Device	Range	Type	Address (Hex)
X	$00 \sim 17$ (Octal)	bit	$0400 \sim 040 \mathrm{~F}$
Y	$00 \sim 17$ (Octal)	bit	$0500 \sim 050 \mathrm{~F}$
T	$00 \sim 159$	bit/word	$0600 \sim 069 \mathrm{~F}$
M	$000 \sim 799$	bit	$0800 \sim 0 B 1 \mathrm{~F}$
M	$1000 \sim 1079$	bit	$0 B E 8 \sim 0 \mathrm{C} 37$
C	$0 \sim 79$	bit/word	$0 E 00 \sim 0 \mathrm{E} 47$
D	$00 \sim 399$	word	$1000 \sim 118 \mathrm{~F}$
D	$1000 \sim 1099$	word	$13 E 8 \sim 144 \mathrm{~B}$
D	$2000 \sim 2799$	word	$17 \mathrm{D} 0 \sim 1 \mathrm{AEF}$

Function Code

Function Code	Description	Supported Devices
01	Read coil status	$\mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$
02	Read input status	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$
03	Read one data	$\mathrm{T}, \mathrm{C}, \mathrm{D}$
05	Force changing one coil status	$\mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$
06	Write in one data	$\mathrm{T}, \mathrm{C}, \mathrm{D}$
0 F	Force changing multiple coil status	$\mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$
10	Write in multiple data	$\mathrm{T}, \mathrm{C}, \mathrm{D}$

Only when PLC is at Stop status, PLC data can be read/write via communication device. When PLC is at Run status, the communication address should be the mapping address, e.g. for Pr.04-00 it maps to 0400 H .

\Rightarrow NOTE

When PLC function is activated, C2000 can Read/Write the PLC and drive's parameter by different addresses (pre-defined station number for the AC motor drive is 1 , for PLC station number is 2)

17.6 Commands

17.6.1 Basic Commands

Commands

Commands	Function	Operands
LD	Load contact A	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$
LDI	Load contact B	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$
AND	Series connection with A contact	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$
ANI	Series connection with B contact	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$
OR	Parallel connection with A contact	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$
ORI	Parallel connection with B contact	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$
ANB	Series connects the circuit block	--
ORB	Parallel connects the circuit block	--
MPS	Save the operation result	--
MRD	Read the operation result (the pointer is not moving)	--
MPP	Read the result	--

Output Command

Commands	Function	Operands
OUT	Drive coil	Y, M
SET	Action latched (ON)	Y, M
RST	Clear the contacts or the registers	Y, M, T, C, D

Timer and Counter

Commands	Function	Operands
TMR	17-bit timer	T-K or T-D
CNT	17-bit counter	C-K or C-D (16 bit)

Main Control Command

Commands	Function	Operands
MC	Connect the common series connection contacts	NO~N7
MCR	Disconnect the common series connection contacts	N0~N7

Rising-edge/falling-edge Detection Commands of Contact

Commands	Function	Operands
LDP	Rising-edge detection operation starts	X, Y, M, T, C
LDF	Falling-edge detection operation starts	X, Y, M, T, C
ANDP	Rising-edge detection series connection	X, Y, M, T, C
ANDF	Falling-edge detection series connection	X, Y, M, T, C
ORP	Rising-edge detection parallel connection	X, Y, M, T, C
ORF	Falling-edge detection parallel connection	X, Y, M, T, C

Rising-edge/falling-edge Output Commands

Commands	Function	Operands
PLS	Rising-edge output	Y, M
PLF	Falling-edge output	Y, M
End Command		
Commands	Function	Operands
END	Program end	--

Other Command

Commands	Function	Operands
NOP	No function	--
INV	Inverse operation result	--
P	Indicator	P

17.6.2 Explanation for the Command

Mnemonic	Function					
LD	Load A contact					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

L The LD command is used on the A contact that has its start from the left BUS or the A contact that is the start of a contact circuit. Function of the command is to

Explanation

 save present contents, and at the same time, save the acquired contact status into the accumulative register.Example Ladder diagram \quad| Command code | Operation | |
| :--- | :--- | :--- |
| LD | X0 | Load contact A of X0 |

Mnemonic	Function					
LDI	Load B contact					
Operand	$\mathrm{X} 0 \sim \mathrm{X} 17$	$\mathrm{Y} 0 \sim \mathrm{Y} 17$	$\mathrm{M} 0 \sim \mathrm{M} 799$	T0~159	$\mathrm{C} 0 \sim \mathrm{C} 79$	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The LDI command is used on the B contact that has its start from the left BUS or the B contact that is the start of a contact circuit. Function of the command is to

Explanation save present contents, and at the same time, save the acquired contact status into the accumulative register.

Command code:		Operation:
LDI	X0	Load contact B of X0
AND	X1	Connect to contact A of X1 in series
OUT	Y1	Drive Y1 coil

Mnemonic	Function					
AND	Series connection- A contact					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The AND command is used in the series connection of A contact. The function of the

Explanation

Example

Command code:	Operation:	
LDI	X1	Load contact B of X1
AND	X0	Connect to contact A of X 0 in series
OUT	Y1	Drive Y 1 coil

Function

Mnemonic
 ANI
 Operand

Series connection- B contact

X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The ANI command is used in the series connection of B contact. The function of the command is to readout the status of present specific series connection contacts first, and then to perform the "AND" calculation with the logic calculation result before the contacts, thereafter, saving the result into the accumulative register.

Ladder diagram:
Example

Mnemonic

Function						
Parallel connection- A contact						
X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399	
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	

The OR command is used in the parallel connection of A contact. The function of the

Explanation

 command is to readout the status of present specific series connection contacts, and then to perform the "OR" calculations with the logic calculation result before the contacts, thereafter, saving the result into the accumulative register.Ladder diagram:

Command code: Operation:

LD	X0	Load contact A of X0
OR	X1	Connect to contact A of X1 in parallel
OUT	Y1	Drive Y1 coil

Mnemonic	Function					
ORI	Parallel connection- B contact					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The ORI command is used in the parallel connection of B contact. The function of the

Explanation

 command is to readout the status of present specific series connection contacts, and then to perform the "OR" calculations with the logic calculation result before the contacts, thereafter, saving the result into the accumulative register.| Example | Ladder diagram: | Command code: | | Operation: |
| :---: | :---: | :---: | :---: | :---: |
| | x0 | LD | X0 | Load contact A of X0 |
| | \pm
 $\times 1$ | ORI | X1 | Connect to contact B of X1 in parallel |
| | +1- | OUT | Y1 | Drive Y1 coil |

Mnemonic	Function			
ANB	Series connection (Multiple Circuits)			
Operand	None			
Explanation	To perform the "ANB" calculation between the previous reserved logic results and contents of the accumulative register.			
Example	Ladder diagram:	Command code:		Operation:
	X1	LD		Load contact A of X0
		ORI		Connect to contact B of X2 in parallel
	$\times 2 \quad \times 3$	LDI		Load contact B of X1
	Block A Block B	OR	X3	Connect to contact A of X3 in parallel
		ANB		Connect circuit block in series
		OUT	Y1	Drive Y1 coil

Mnemonic	Function
ORB	Parallel connection (Multiple circuits)
Operand	None

Explanation
ORB is to perform the "OR" calculation between the previous reserved logic results and contents of the accumulative register.

Example

Ladder diagram:

Command code: Operation:

LD	X0	Load contact A of X0
ANI	X1	Connect to contact B of X1 in series
LDI	X2	Load contact B of X2
AND	X3	Connect to contact A of X3 in series
ORB		Connect circuit block in parallel
OUT	Y1	Drive Y1 coil

Mnemonic	Function
MPS	Store the current result of the internal PLC operations
Operand	None
Explanation	To save contents of the accumulative register into the operation result. (the result operation pointer pluses 1)

Mnemonic	Function
MRD	Reads the current result of the internal PLC operations
Operand	None
Explanation	Reading content of the operation result to the accumulative register. (the pointer of operation result doesn't move)

Mnemonic	Function			
MPP	Reads the current result of the internal PLC operations			
Operand	None			
Explanation	Reading content of the operation result to the accumulative register. (the stack pointer will decrease 1)			
Example	Ladder diagram:	Command code:		Operation:
		LD	X0	Load contact A of X0
		MPS		Save in stack
		AND		Connect to contact A of X 1 in series
		OUT	Y1	Drive Y1 coil
		MRD		Read from the stack (without moving pointer)
		AND	X2	Connect to contact A of X 2 in series
		OUT	MO	Drive M0 coil
		MPP		Read from the stack
		OUT	Y2	Drive Y2 coil
		END		End program

Mnemonic Function OUT Output coil Operand X0~X17 Y0~Y17 M0~M799 T0~159 C0~C79 D0~D399 - \checkmark \checkmark - - - Explanation Output the logic calculation result before the OUT command to specific device. Motion of coil contact:

Operation result	OUT command		
	Coil	A contact (normally open)	
	Off	B contact (normally closed)	
FALSE	Non-continuity	Continuity	
TRUE	On	Continuity	Non-continuity

Command code: Operation:

LD	X0	Load contact B of X0
AND	X1	Connect to contact A of
O1 in series		
OUT	Y1	Drive Y1 coil

Mnemonic	Function					
SET	Latch (ON)					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	-	\checkmark	\checkmark	-	-	-

When the SET command is driven, its specific device is set to be "ON," which will

Explanation keep "ON" whether the SET command is still driven. You can use the RST command to set the device to "OFF".

Command code:		
LD	Operation:	
X0	Load contact A of X0	
AN	Y0	Connect to contact B of YO in series
SET	Y1	Y1 latch (ON)

Mnemonic	Function					
RST	Clear the contacts or the registers					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	When the RST command is driven, motion of its specific device is as follows:					
	Device	Status				
	Y, M	Coil and contact will be set to "OFF".				
	T, C	Present values of the timer or counter will be set to 0, and the coil and contact will be set to "OFF."				
	D	The content value will be set to 0.				

Example	Ladder diagram			Command code:		Operation:
				LD	X0	Load contact A of X0
		RST	Y5	RST	Y5	Clear contact Y5

Mnemonic	Function	
TMR	16-bit timer	
Operand	T-K	T0~T159, K0~K32,767
	T-D	T0~T159, D0~D399

Explanation

When TMR command is executed, the specific coil of timer is ON and timer will start to count. When the setting value of timer is attained (counting value $>=$ setting value), the contact will be as following

NO(Normally Open)	contact	Open collector
NC(Normally Closed)	contact	Close collector

When the RST command is not driven, motion of its specific device remains unchanged.

Example	Ladder Diagram:				Command code:		Operation:
	X0				LD	X0	Load contact A of X0
		TMR	T5	K1000	TMR	$\begin{gathered} \text { T5 } \\ \text { K1000 } \end{gathered}$	Setting of T5 counter is K1000.

Mnemonic	Function	
CNT	Clear contact or register	
Operand	C-K	C0~C79, K0~K32,767
	C-D	C0~C79, D0~D399

Explanation

When the CNT command is executed from OFF \rightarrow ON, which means that the counter coil is driven, and 1 should thus be added to the counter's value; when the counter achieved specific set value (value of counter = the setting value), motion of the contact is as follows:

NO(Normally Open) contact	Open collector
NC(Normally Close) contact	Close collector

If there is counting pulse input after counting is attained, the contacts and the counting values will be unchanged. To re-count or to conduct the CLEAR motion, please use the RST command.

Mnemonic

Function

MC/MCR Master control Start/Reset

Operand N0~N7

1. $M C$ is the main-control start command. When the MC command is executed, the execution of commands between MC and MCR will not be interrupted. When MC command is OFF, the motion of the commands that between MC and MCR is described as follows:

Command	Description
Timer	The counting value is set back to zero, the coil and the contact are both turned OFF
Accumulative timer	The coil is OFF, and the timer value and the contact stay at their present condition
Subroutine timer	The counting value is back to zero. Both coil and contact are turned OFF. The coil is OFF, and the counting value and the contact stay at their present condition
Counter	All turned OFF
Coils driven up by the OUT command	Devices driven up by the SET and RST commands
Stay at present condition	
Application commands	All of them are not acted, but the nest loop FOR-NEXT command will still be executed for times defined by users even though the MC-MCR commands is OFF.

2. MCR is the main-control ending command that is placed at the end of the main-control program and there should not be any contact commands prior to the MCR command.
3. Commands of the MC-MCR main-control program support the nest program structure, with 8 layers as its greatest. Please use the commands in order from N0~ N7, and refer to the following:

Command code: Operation:

LD	X0	Load A contact of X0
MC	N0	Enable N0 common series connection contact
LD	X1	Load A contact of X1
OUT	Y0	Drive Y0 coil
:		
LD	X2	Load A contact of X2
MC	N1	Enable N1 common series connection contact
LD	X3	Load A contact of X3
OUT	Y1	Drive Y1 coil

MCR	N1	Disable N1 common series connection contact
MCR	N0	Disable N0 common series connection contact
LD	X10	Load A contact of X10
MC	N0	Enable N0 common series connection contact
LD	X11	Load A contact of X0 Enable N0 common
OUT	Y10	Eneries connection sentact Load A contact of X1
MCR	N0	Lrive Y0 coil

Mnemonic	Function					
LDP	Rising-edge detection operation					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation

Usage of the LDP command is the same as the LD command, but the motion is different. It is used to reserve present contents and at the same time, saving the
detection status of the acquired contact rising-edge into the accumulative register.

Example Ladder diagram:

Command code: Operation:

LDP	X0	Start X0 rising-edge detection
AND	X1	Series connection A contact of X 1
OUT	Y 1	Drive Y1 coil

Please refer to the specification of each model series for the applicable range of operands.
If rising-edge status is ON when PLC power is off, then the rising-edge status will be TRUE when PLC power is on.

Mnemonic	Function					
LDF	Falling-edge detection operation					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Usage of the LDF command is the same as the LD command, but the motion is different. It is used to reserve present contents and at the same time, saving the detection status of the acquired contact falling-edge into the accumulative register.

Ladder diagram:

Command code: Operation:

LDF	X0	Start X0 falling-edge detection
AND	X1	Series connection A contact of X1
OUT	Y1	Drive Y1 coil

Mnemonic	Function					
ANDP	Rising-edge series connection					
Operand	$\mathrm{X0} \mathrm{\sim X17}$	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation
ANDP command is used in the series connection of the contacts' rising-edge detection.

Ladder diagram:

Command code:

LD	X0	Load A contact of X0
ANDP	X1	X1 rising-edge detection in series connection
OUT	Y1	Drive Y1 coil

Mnemonic	Function					
ANDF	Falling-edge series connection					
Operand	$\mathrm{X} 0 \sim \mathrm{X} 17$	$\mathrm{Y} 0 \sim \mathrm{Y} 17$	M0~M799	T0~159	C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation ANDF command is used in the series connection of the contacts' falling-edge detection.

| Ladder diagram: | Command code: | Operation: |
| :--- | :--- | :--- | :--- | :--- |
| LD | X0 | Load A contact of X0 |

Mnemonic	Function					
ORP	Rising-edge parallel connection					
Operand	$\mathrm{X} 0 \sim \mathrm{X} 17$	$\mathrm{Y} 0 \sim \mathrm{Y} 17$	$\mathrm{M} 0 \sim \mathrm{M} 799$	$\mathrm{~T} 0 \sim 159$	$\mathrm{C} 0 \sim \mathrm{C} 79$	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The ORP commands are used in the parallel connection of the contact's

Explanation

 rising-edge detection.

Mnemonic	Function	
END	Program End	
Operand		None

It needs to add the END command at the end of ladder diagram program or

Explanation

 command program. PLC will scan from address o to END command, after the execution it will return to address 0 and scan again.| Mnemonic | Function | | | |
| :---: | :---: | :---: | :---: | :---: |
| NOP | No action | | | |
| Operand | None | | | |
| Explanation | NOP command does no operation in the program; the result of executing this command will remain the logic operation. Use NOP command if user wants to delete certain command without changing the length of the program. | | | |
| Example | Ladder diagram:
 NOP command will be simplified and not displayed when the ladder diagram is displayed. | Command code: Operation: | | |
| | | | | Load contact B of X0 |
| | | NOP | | No function |
| | | OUT | Y1 | Drive Y1 coil |

| Mnemonic | | Function |
| :---: | :--- | :--- | :--- |
| INV | Inverse operation result | |
| Operand | | None |
| Explanation | The operation result (before executing INV command) | will be saved inversely into |
| cumulative register. | | |

Mnemonic	Function				
P	Indicator				
Operand	P0~P255				
Explanation	Indicator P allows API 00 CJ command and API 01 CALL command to skip from 0. Though it is not necessary to start from number 0 , same number can not be used twice or serious error would occur.				
Example	Ladder diagram:		Command code: LD Operation: CJ P10 Load contact A of X0 Pkip command CJ to 		
			P10		Indicator P10
			LD	X1	Load contact A of X1
			OUT	Y1	Drive Y1 coil

17.6.3 Description of the Application Commands

	API	Mnemonic Codes		P Command	Function	STEPS	
		16-bit	32-bit			16bit	32bit
Loop control	01	CALL	-	\checkmark	CALL subroutine	3	-
	02	SRET	-	-	The end of subroutine	1	-
	06	FEND	-	-	The end of main program	1	-
Transmission Comparison	10	CMP	DCMP	\checkmark	Compare	7	13
	11	ZCP	DZCP	\checkmark	Zone compare	9	17
	12	MOV	DMOV	\checkmark	Data Move	5	9
	15	BMOV	DCMP	\checkmark	Block move	7	-
Four Fundamental Operations of Arithmetic	20	ADD	-	\checkmark	Perform the addition of BIN data	7	13
	21	SUB	DADD	\checkmark	Perform the subtraction of BIN data	7	13
	22	MUL	DSUB	\checkmark	Perform the multiplication of BIN data	7	13
	23	DIV	DMUL	\checkmark	Perform the division of BIN data	7	13
	24	INC	DDIV	\checkmark	Perform the addition of 1	3	5
	25	DEC	DINC	\checkmark	Perform the subtraction of 1	3	5
Rotation and Displacement	30	ROR	DDEC	\checkmark	Rotate to the right	5	-
	31	ROL	DROR	\checkmark	Rotate to the left	5	-
Data Processing	40	ZRST	-	\checkmark	Zero Reset	5	-
	49	FLT	DFLT	\checkmark	Floating Point	5	9
Communication	150	MODRW	-	\checkmark	MODBUS R/W	7	-
Floating Point	110	-	DECMP	\checkmark	Floating Point Compare	-	13

	API	Mnemonic Codes		P Command	Function	STEPS	
		16-bit	32-bit			16bit	32bit
Operation	111	-	DEZCP	\checkmark	Floating Point Zone Compare	-	17
	116	-	DRAD	\checkmark	Degree \rightarrow Radian	-	9
	117	-	DDEG	\checkmark	Radian \rightarrow Degree	-	9
	120	-	DEADD	\checkmark	Floating Point Addition	-	13
	121	-	DESUB	\checkmark	Floating Point Subtraction	-	13
	122	-	DEMUL	\checkmark	Floating Point Multiplication	-	13
Floating Point Operation	123	-	DEDIV	\checkmark	Floating Point Division	-	13
	124	-	DEXP	\checkmark	Float Exponent Operation	-	9
	125	-	DLN	\checkmark	Float Natural Logarithm Operation	-	9
	127	-	DESQR	\checkmark	Floating Point Square Root	-	9
	129	-	DINT	\checkmark	Float to Integer	-	9
	130	-	DSIN	\checkmark	Sine	-	9
	131	-	DCOS	\checkmark	Cosine	-	9
	132	-	DTAN	\checkmark	Tangent	-	9
	133	-	DASIN	\checkmark	Arc Sine	-	9
	134	-	DACOS	\checkmark	Arc Cosine	-	9
	135	-	DATAN	\checkmark	Art Tangent	-	9
	136	-	DSINH	\checkmark	Hyperbolic Sine	-	9
	137	-	DCOSH	\checkmark	Hyperbolic Cosine	-	9
	138	-	DTANH	\checkmark	Hyperbolic Tangent	-	9
Calendar	160	TCMP	-	\checkmark	Comaprison of calendar data	11	-
	161	TZCP	-	\checkmark	Comparison of calendar data area	9	-
	162	TADD	-	\checkmark	Calendar data addition	7	-
	163	TSUB	-	\checkmark	Calendar data substraction	7	-
	166	TRD	-	\checkmark	Read calendar data	3	-
Gray code	170	GRY	DGRY	\checkmark	BIN \rightarrow GRY code		
	171	GBIN	DGBIN	\checkmark	GRY code \rightarrow BIN		
Contact type logic operation	215	LD\&	DLD\&	-	Contact Logical Operation LD\#	5	9
	216	LD\|	DLD	-	Contact type logic operation LD \#	5	9
	217	LD^	DLD^	-	Contact Logical Operation LD\#	5	9
	218	AND \&	DAND\&	-	Contact Logical Operation AND\#	5	9
	219	ANDI	DANDI	-	Contact Logical Operation AND\#	5	9

	API	Mnemonic Codes		P Command	Function	STEPS	
		16-bit	32-bit			16bit	32bit
	290	-	FOR<>	-		-	9
	291	-	FOR $<=$	-		-	9
	292	-	FOR $>=$	-		-	9
Special command for AC motor drive	139	RPR	-	\checkmark	Read the parameters	5	-
	140	WPR	-	\checkmark	Write the parameters	5	-
	141	FPID	-	\checkmark	Drive PID control	9	-
	142	FREQ	-	\checkmark	Control the drive frequency	7	-
	261	CANRX	-	\checkmark	Read CANopen Slave data	9	-
	263	TORQ	-	\checkmark	Set target torque	5	-
	264	CANTX	-	\checkmark	Write CANopen Slave data	9	-
	265	CANFLS	-	\checkmark	Update the mapping special D of CANopen	3	-

17.6.4 Explanation for the Application Commands

API	- CALL	\mathbf{P}	S	Call Subroutine
01				

1. \mathbf{S} : The pointer of call subroutine.
2. Edit the subroutine designated by the pointer after FEND instruction.
3. If only CALL instruction is in use, it can call subroutines of the same pointer number with no limit of times.
4. Subroutine can be nested for 5 levels including the initial CALL instruction. (If entering the sixth level, the subroutine won't be executed.)

API	\square	FEND	-	The end of the main program (First End)
06				

	Bit Devices		Word Devices						16-bit command (1 STEP)			
X	Y	M	K	H	KnX ${ }^{\text {KnY }}$ KnM	T	C	D	FEND		-	-
Operands:									32-bit command			
	era								-		-	-
	nta	to	rive	he	nstruction is req	uire			Flag sig	Non		

1. This instruction denotes the end of the main program. It has the same function as that of END instruction when being executed by PLC.
2. CALL must be written after FEND instruction and add SRET instruction in the end of its subroutine. Interruption program has to be written after FEND instruction and IRET must be added in the end of the service program.
3. If several FEND instructions are in use, place the subroutine and interruption service programs between the final FEND and END instruction.
4. After CALL instruction is executed, executing FEND before SRET will result in errors in the program.

CALL
Command

When $\mathrm{X} 1=\mathrm{ON}$, operation procedure When X1=OFF,
operation
procedure

| API | | CMP | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | \mathbf{D} | | \mathbf{P} | S1) (S2) D | Compare |

Explanation

Example

1. \mathbf{S}_{1} : value comparsion $1, \mathbf{S}_{2}$: value comparison $2, \mathbf{D}$: result comparison
2. The contents in \mathbf{S}_{1} and \mathbf{S}_{2} are compared and result is stored in \mathbf{D}.
3. The two comparison values are compared algebraically and the two values are signed binary values. When b15 = 1 in 16-bit instruction, the comparison will regard the value as negative binary values.
4. Designate device YO , and operand D automatically occupies Y 0 , Y 1 , and Y 2 .
5. When $\mathrm{X} 10=\mathrm{On}, \mathrm{CMP}$ instruction will be executed and one of $\mathrm{Y} 0, \mathrm{Y}$, and Y 2 will be On. When X10 = Off, CMP instruction will not be executed and Y0, Y 1 , and Y 2 remain their status before $\mathrm{X} 10=$ Off.
6. If the user need to obtain a comparison result with $\geq \leq$, and \neq, make a series parallel connection between Y0 ~ Y2.

7. To clear the comparison result, use RST or ZRST instruction.

API		ZCP		S1 S2 S S D	Done Compare		
11	\mathbf{D}		\mathbf{P}				

Bit Devices				Word Devices									
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	16-bit command (9 STEPS)	
S_{1}				*	*	*	*	*	*	*	*	ZCP ZCPP	
S_{2}				*	*	*	*	*	*	*	*		
S				*	*	*	*	*	*	*	*	32-bit command (17 STEPS)	
D		*	*									$-\quad-\quad-$	
	S : boun bou D:	ds: Low nd Com				arison	compa S:	Com	\mathbf{S}_{2} paris			Flag signal: none	

Explanation

Example

1. \mathbf{S}_{1} : Lower bound of zone comparison \mathbf{S}_{2} : Upper bound of zone comparison S : Comparison value D: Comparison result
2. S is compared with its $\mathbf{S}_{1} \mathbf{S}_{2}$ and the result is stored in \mathbf{D}
3. When $\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{2}$, the instruction performs comparison by using \mathbf{S}_{1} as the lower/upper bound.
4. The two comparison values are compared algebraically and the two values are signed binary values. When b15 = 1 in 16-bit instruction or b31 = 1 in 32-bit instruction, the comparison will regard the value as negative binary values.
5. Designate device M 0 , and operand D automatically occupies $\mathrm{M} 0, \mathrm{M} 1$ and M2.
6. When $X 0=O n, Z C P$ instruction will be executed and one of $M 0, M 1$, and M2 will be On. When X10 = Off, ZCP instruction will not be executed and M 0 , M1, and M2 remain their status before $\mathrm{X0}=$ Off.
7. If the user need to obtain a comparison result with $\geq \leq$, and \neq, make a series parallel connection between $\mathrm{Y} 0 \sim \mathrm{Y} 2$.

8. To clear the comparison result, use RST or ZRST instruction.

API		MOV		(S) D	Moving the data

Bit Devices				Word Devices								MO-bit command (5 STEPS)			
				K	H	KnX	KnY	KnM	T	C	D				
S				*	*	*	*	*	*	*	*				
D							*	*	*	*	*	32-bit	-	(9 STEPS)	
Operand: None												Flag sig	None		

Explanation

1. S : Source of data
D: Destination of data
2. When this instruction is executed, the content of S will be moved directly to D. When this instruction is not executed, the content of D remains unchanged.

Example

1. When $\mathrm{X0}=\mathrm{Off}$, the content in D 10 will remain unchanged. If $\mathrm{XO}=\mathrm{On}$, the value K 10 will be moved to D10 data register.
2. When $\mathrm{X} 1=\mathrm{Off}$, the content in D 10 will remain unchanged. If $\mathrm{X} 1=\mathrm{On}$, the present value T0 will be moved to D10 data register.

API	BMOV		(S D n	Block Move
15		P		

2. The contents in n registers starting from the device designated by S will be moved to n registers starting from the device designated by D . If n exceeds the actual number of available source devices, only the devices that fall within the valid range will be used.

Example When X10 = On, the contents in registers D0 ~ D3 will be moved to the 4 registers D20
1 ~ D23.

Example

2

Assume the bit devices $\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}$ and KnS are designated for moving, the number of digits of S and D has to be the same, i.e. their n has to be the same.

M 4		
M 5		
M 4		
M 6		
M 7		
	\rightarrow	Y 5
	Y 6	
	Y 7	

M8	\rightarrow	Y10
M9	\rightarrow	Y11
M10	\rightarrow	Y12
M11	\rightarrow	Y13

Example

To avoid coincidence of the device numbers to be moved designated by the two operands and cause confusion, please be aware of the arrangement on the
3 designated device numbers.

When $S>D$, the BMOV command is processed in the order as $(1) \rightarrow(2) \rightarrow$ (3)

When $S<D$, the BMOV command is processed in the order as $(3) \rightarrow$ (2) \rightarrow (1)

API		ADD		S1) S2 (D)	BIN Addition
20	D		\mathbf{P}		

	Bit	ev	es				ord D	Devic				16-bit command (7	TEPS)	
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	ADD	ADDP	
S_{1}				*	*	*	*	*	*	*	*	32-bit command (13 STEPS)		
S_{2}				*	*	*	*	*	*	*	*			
D							*	*	*	*	*			
Operands: None												Flag signal: M1020M1021 M1022	Zero flag Borrow flag Carry flag	

Explanation

1. \mathbf{S}_{1} : Summand \mathbf{S}_{2} : Addend D : Sum
2. This instruction adds \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ in BIN format and store the result in D.
3. The highest bit is symbolic bit $0(+)$ and $1(-)$, which is suitable for algebraic addition, e.g. $3+(-9)=-6$.
4. Flag changes in binary addition

16-bit command:
A. If the operation result $=0$, zero flag M1020 $=$ On.
в. If the operation result $<-32,768$, borrow flag M1021 $=$ On.
c. If the operation result > 32,767, carry flag M1022 = On.

Example 16-bit command:
When $\mathrm{X} 0=\mathrm{On}$, the content in D0 will plus the content in D10 and the sum will be stored in D20.

Remarks Flags and the positive/negative sign of the values:

1. \mathbf{S}_{1} : Minuend
S_{2} : Subtrahend
D: Remainder
2. This instruction subtracts \mathbf{S}_{1} and $\mathbf{S}_{\mathbf{2}}$ in BIN format and stores the result in \mathbf{D}.
3. The highest bit is symbolic bit $0(+)$ and $1(-)$, which is suitable for algebraic subtraction.
4. Flag changes in binary subtraction

In 16-bit instruction:
If the operation result $=0$, zero flag M1020 $=$ On.
If the operation result $<-32,768$, borrow flag M1021 $=$ On.
If the operation result $>32,767$, carry flag M1022 $=$ On.
Example In 16-bit BIN subtraction:
When $\mathrm{X0} 0=\mathrm{On}$, the content in D0 will minus the content in D10 and the remainder will be stored in D20.

API		MUL		S1	S2	D
22	D		\mathbf{P}		BIN Multiplication	

Explanation

1. \mathbf{S}_{1} : Multiplicand
S_{2} : Multiplication
D: Product
2. This instruction multiplies \mathbf{S}_{1} by $\mathbf{S}_{\mathbf{2}}$ in BIN format and stores the result in D. Be careful with the positive/negative signs of $\mathbf{S}_{1}, \mathbf{S}_{2}$ and D when doing 16-bit and 32-bit operations. 16-bit command:

When D serves as a bit device, it can designate K1 ~ K4 and construct a 16-bit result, occupying consecutive 2 groups of 16-bit data.
The 16-bit D0 is multiplied by the 16-bit D10 and brings forth a 32 -bit product. The higher 16-bit are stored in D21 and the lower 16-bit are stored in D20. On/Off of the most left bit indicates the positive/negative status of the result value.

$\left.$Bit Devices X Y \right\rvert\, M				Word Devices								16-bit command (7 STEPS)			
				K	H	KnX	KnY	KnM	T	C	D				
S_{1}				*	*	*	*	*	*	*	*				
S_{2}				*	*	*	*	*	*	*	*	32-bit command (13 STEPS)			
D							*	*	*	*	*				
Operands: In 16-bit instruction, \mathbf{D} occupies 2 consecutive devices.												Flag signal: none`			
1. \mathbf{S}_{1} : Dividend \mathbf{S}_{2} : Divisor

D: Quotient and remainder
2. This instruction divides \mathbf{S}_{1} and \mathbf{S}_{2} in BIN format and stores the result in D . Be careful with the positive/negative signs of S_{1}, S_{2} and D when doing 16-bit and 32-bit operations.

16-bit instruction:

If D is the bit device, it allocates K1~K14 to 16-bit and occupies 2 continuous sets of quotient and remainder.

Example When $\mathrm{X} 0=\mathrm{On}$, D0 will be divided by D10; the quotient will be stored in D20 and remainder in D21. On/Off of the highest bit indicates the positive/negative value of the result.

DIV	D0	D10	D20	
	DIV	D0	D10	K4Y0

Bit Devices				Word Devices								$\begin{aligned} & \frac{16 \text {-bit command (3 STEPS) }}{\text { INC }} \text { INCP } \end{aligned}$	
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D		
D							*	*	*	*	*	32-bit command (5 STEPS)	
Operands: none												\bigcirc	
												Flag signal: none	

Explanation

1. D: Destination device
2. If the instruction is not a pulse execution one, the content in the designated device D will plus " 1 " in every scan period whenever the instruction is executed.
3. This instruction adopts pulse execution instructions (INCP).
4. In 16-bit operation, 32,767 pluses 1 and obtains $-32,768$. In 32-bit operation, 2,147,483,647 pluses 1 and obtains -2,147,483,648.
Example When X0 goes from Off to On, the content in DO pluses 1 automatically.

API		DEC			D
25	\mathbf{D}		\mathbf{P}	Decrement: BIN minus 1	

Bit Devices				Word Devices								16-bit command (3 STEPS)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
D				*	*	*	*	*				3-bit	and	FPS	
Operands: none												2-bit	and	EPS	
												Flag sig	none		
Explanation				D: Destination											

1. If the command is not a pulse execution type, the content in the designated device D will minus " 1 " in every scan period whenever the instruction is executed.
2. This instruction adopts pulse execution instructions (DECP).
3. In 16-bit operation, $-32,768$ minuses 1 and obtains 32,767 . In 32-bit operation, $-2,147,483,648$ minuses 1 and obtains 2,147,483,647.

Example When X0 goes from Off to On, the content in D0 minuses 1 automatically.

| API | - ROR | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 30 | | P | | Rotate to the Right |

Bit Devices				Word Devices								16 bit command (5 STEPS)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	ROR	RORP	
D							*	*	*	*	*			
n				*	*							32-bit command		
	$\begin{aligned} & \text { if in } \\ & \eta=K \end{aligned}$	ds:	$\begin{aligned} & \text { and } \\ & 6(1, \end{aligned}$	$\begin{aligned} & \text { KnM } \\ & \text {-bit) } \end{aligned}$	on	y K4	(16-bi	t) is	alid			Flag signal: M1022	arry flag	

Explanation

1. D: Device to be rotated \mathbf{n} : Number of bits to be rotated in 1 rotation
2. This instruction rotates the device content designated by \mathbf{D} to the right for n bits.
3. This instruction adopts pulse execution instructions (RORP).

Example When X0 goes from Off to On, the 16-bit (4 bits as a group) in D10 will rotate to the right, as shown in the figure below. The bit marked with $※$ will be sent to carry flag M1022.

| API | ROL | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 31 | | \mathbf{P} | n | Rotate to the Left |

Bit Devices				Word Devices								16-bit command (5 STEPS)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	ROL		ROLP	
D							*	*	*	*	*	32-bit command			
n				*	*							:32-bit		-	
D: if in KnY and KnM , only K 4 (16-bit) is valid n : $\mathrm{n}=\mathrm{K} 1 \sim \mathrm{~K} 16$ (16-bit)												Flag si	M1022	Carry flag	

1. D: Device to be rotated; \mathbf{n} : Number of bits to be rotated in 1 rotation
2. This instruction rotates the device content designated by \mathbf{D} to the left for n bits.
3. This instruction adopts pulse execution instructions (ROLP).

Example When X0 goes from Off to On, the 16-bit (4 bits as a group) in D10 will rotate to the left, as shown in the figure below. The bit marked with $※$ will be sent to carry flag M1022.

API		ZRST		(D1) (D2)	Zero Reset
40			\mathbf{P}		

Bit Devices				Word Devices										
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	16-bit command (5 STEPS)		
D_{1}		*	*						*	*	*	ZRST	ZRSTP	
D_{2}		*	*						*	*	*	32-bit command		
Operands: No of D_{1} operand. \leqq No. of D_{2} operand D_{1} and D_{2} must select same device type														
												Flag signal: none		

Explanation
D_{1} : Start device of the range to be reset
D_{2} : End device of the range to be reset When $D_{1}>D_{2}$, only operands designated by D_{2} will be reset.

Example

1. When $\mathrm{X0} 0=\mathrm{On}$, auxiliary relays M300~M399 will be reset to Off.
2. When $\mathrm{X} 1=\mathrm{On}, 16$ counters $\mathrm{C} 0 \sim \mathrm{C} 127$ will all be reset (writing in 0 ; contact and coil being reset to Off).
3. When $\mathrm{X} 10=$ On, timers $\mathrm{T} 0 \sim \mathrm{~T} 127$ will all be reset (writing in 0 ; contact and coil being reset to Off).
4. When $\mathrm{X} 3=\mathrm{On}$, data registers $\mathrm{D} 0 \sim \mathrm{D} 100$ will be reset to 0 .

Remarks 1. Devices, e.g. bit devices Y, M, S and Word Devices T, C, D, can use RST instruction.
2. API 16 FMOV instruction is also to send K0 to Word Devices T, C, D or bit registers $\mathrm{KnY}, \mathrm{KnM}, \mathrm{KnS}$ for reset.

API		FLT			S
49	D		P		Floating Point

Explanation - S: source device. D: Device for storing the conversion result

- Change the intergral number of BIN to a number with two decimal places.

Example 1. When $\mathrm{X} 11=\mathrm{On}$, change the corresponding integral number to the floating point notation and put them into D20 and D21.

Please refer to the specification of each model series for applicable range of the device.

■ S1: Addres of the connecting device. S2: Communication function code. S3: Address to read data. S: Register to read and write data.
■ Before using this command, set COM1 to be controlled by PLC(Set Pr09-31 = -12). Then set the corresponding comunication speed and format(Set Pr09-01 and Pr09-04). S2: Communication function code. This command only supports the function codes in the table below.

Function	Description
02	Input read
03	Read Word
06	Write a single Word.
$0 F$	Write multiple coil
10	Write a single word

- Once the command is executed, M1077, M1078 and M1079 will become zero.

■ Here is an example of when C2000 wants to control another motor drive and a PLC with station number 20.

To control a slave motor drive

No.	Example	MODRW COMMAND				
		S1	S2	S3	S4	n
		Station \#	Fucntion Code	Address	Register	$\begin{gathered} \text { Leng } \\ \text {-th } \end{gathered}$
1	Read Pr01-00 ~ Pr01-03, four data and save the read data in D0 to D3.	K10	H3	H100	D0	K4
2	Read motor drive's address from H2100 ~ H2104, total 3 data and save the read data in D5 ~ D7.	K10	H3	H2100	D5	K3
3	Write into Pr05-00 ~ Pr01-03, total 3 data, the value to write into are D10 ~ D2	K10	H10	H500	D10	K3
4	Write into motor drive's address H2000~H2104, total 2 data, the value to write into are D15~D16.	K10	H10	H2000	D15	K2

	To co	trol the slave PLC					
				MODR	RW COM	MAND	
	No.	Example	S1	S2	S3	S4	n
			$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Station } \\ \# \end{array} \\ \hline \end{array}$	Function code	Address	Registe r	Length
	1	Read X0~X3 of slave PLC, total 4 data and save the data read in bit 0~3 of DO.	K20	H2	H400	D0	K4
	2	Read YO~Y3 of slave PLC, total 4 data and save the data read in bit 0~3 of D1.	K20	H2	H500	D1	K4
	3	Read MO~M3 of slave PLC, total 4 data and save the data read in bit 0~3 of D2..	K20	H2	H800	D2	K4
	4	Read T0~T3 of slave PLC, total 4 data and save the data read in bit 0~3 of D3..	K20	H2	H600	D3	K4
	5	Read C0~C3 of slave PLC, total 4 data and save the data read in bit 0~3 of D4..	K20	H2	HEOO	D4	K4
	6	Read T0~T3 of slave PLC, total 4 data and save the data read in D10~D13...	K20	H3	H600	D10	K4
	7	Read C0~C3 of slave PLC, total 4 data and save the data read in D20~D23.	K20	H3	HEOO	D20	K4
	8	Read D0~D3 of slave PLC, total 4 data and save the data read in D30~D33.	K20	H3	H1000	D30	K4
	9	Write into YO~Y3 of of slave PLC, total 4 data. The values to write in are bit0~3 of D1.	K20	HF	H500	D1	K4
	10	Write into MO~M3 of of slave PLC, total 4 data. The values to write in are bit0~3 of D2.	K20	HF	H800	D2	K4
	11	Write into T0~T3 of of slave PLC, total 4 data. The values to write in are bit0~3 of D3.	K20	HF	H600	D3	K4
	12	Write into C0~C3 of of slave PLC, total 4 data. The values to write in are bit0~3 of D4.	K20	HF	HEOO	D4	K4
	13	Write into TO~T3 of of slave PLC, total 4 data. The values to write in are D10~D13.	K20	H10	H600	D10	K4
	14	Write into C0~C3 of of slave PLC, total 4 data. The values to write in are D20~D23.	K20	H10	HEOO	D20	K4
	15	Write into D0~D3 of of slave PLC, total 4 data. The values to write in are D30~D33.	K20	H10	H1000	D30	K4

- As the PLC starts to run, $\mathrm{MO}=\mathrm{ON}$ will be triggered, and a MODRW command will be executed.
- If the command is correct and once a reply is sent from the slave, a ROL command will be executed, and then M 1 will be ON again.
- Once a reply is sent from the salve, M50=1 will be triggered after PLC's scanning cycle is delayed by 10 times, then a MODRW command will be executed.
- If the command is correct and once a reply is sent from the slave, a ROL command will be executed, and then M2 will be ON again. Since M2 is repeated, so it changes K4M0 to K1, then only $\mathrm{M} 0=1$, this command will repeat itself.. If more commands need to be added, simply add blue color command and change repeat M to repeat $\mathrm{Mn}+1$

		ev					rd D	Devic						
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	command	P	
S1				*	*						*			
S2				*	*						*	32-bit command		
D				*	*						*	DECMP	DECMPP	
Operands: D Operands occupy three continuous points. Please refer to the specification of each model series for applicable range of the device.												Flag signal: none		

Explanation $\quad \mathbf{S}_{1}$: Binary floating point number comparison value 1. $\mathbf{S}_{\mathbf{2}}$: Binary floating point number comparison value 2. D: Comparison result, three continuous points are occupied.

- Comparison of the binary floating point number comparison value and binary floating point number comparison value 2. Comparison result $(>,=,<)$ is shown at D.
- If the source operands of $\mathbf{S}_{\mathbf{1}}$ or $\mathbf{S}_{\mathbf{2}}$ are assigned constants K or H , a command will change those constants to binary floating point numbers to make comparison.

Example - When assgined device is M10, then M10~M12 are automatically occupied.

- When $\mathrm{X} 0=\mathrm{On}$, DCMP execute a command, One of M10 ~M12 will be On. But when X0 = Off, DECMP doen't execute any command, M10 ~ M12 remains the same status as before $\mathrm{X0}=\mathrm{Off}$.

■ If you need to have results such as \geqq, \leqq or \neq, make M10~ M12 parallel connection.

- Use the RST or ZRST command to clean the results.

API	DEZCP			(S1) (S)	Floating Point Zone Compare
111			P		

	Bit Devices			Word Devices										
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	16-bit command (5 STEPS)		-
S1				*	*						*	- -	-	
S2				*	*						*			
S				*	*						*	32-bit command		
D				*	*						*	DEZCP	DEZCPP	
	era pera ase app	soc	upy to	ree	nt	uous ication dev	points of ce.	each	mo	el s		Flag signal: none		

Explanation ■ \mathbf{S}_{1} : The lower limit of a binary floating poiont number of a zone comparison. $\mathbf{S}_{\mathbf{2}}$: The upper limit of a binary floating point number of a zone comparison. D: Comparison result,.three continuous points are occupied.

- \mathbf{S}_{1} : Binary floating point number comparison value. Compare \mathbf{S} to the \mathbf{S}_{1} binary floating point number lower limit and to the $\mathbf{S}_{\mathbf{2}}$ binary floating point number upper limit. Show the comparison result at \mathbf{D}.
- If the source operands of \mathbf{S}_{1} or \mathbf{S}_{2} are assigned constants K or H , a command will change those constants to binary floating point numbers to make comparison.
- When the binary floaring point number lower limit $\mathbf{S}_{\mathbf{1}}$ is bigger than the binary floating point number upper limit $\mathbf{S}_{\mathbf{2}}$. Then a command uses the binary floating point number lower limit \mathbf{S}_{1} as upper/lower limit to make comparison.

Example - When assgined device is M 0 , then $\mathrm{M} 10 \sim \mathrm{M} 12$ are automatically occupied.

- When $\mathrm{X} 0=\mathrm{On}$, DCMP execute a command, One of M10 ~M12 will be On. But when X0 = Off, DECMP doen't execute any command, M10 ~M12 remains the same status as before $\mathrm{X} 0=$ Off.
- Use the RST or ZRST command to clean the results

W0 When (D1D0) > (D21D20), M0 = On

	Bit Devices			Word Devices								16-bit command (5 STEPS)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D			
S				*	*						*	32-bit command		
D				*	*						*			
Operands: Please refer to the specifications of each model for the range of operands.												Flag signal: none	DRADP	

Explanation $\quad \mathbf{S}$: source of the data (degree). $\mathbf{D}:$ result of the changes (radian).

- Use the following formula to change degree to radian.
- \quad Radian $=$ Degree $\times(\pi / 180)$

Example When $\mathrm{X0}=\mathrm{On}$, assign the degree of binary floating point number (D11, D10). Once the dregree is chaned to radian, save it in the (D11, D10), the value is a binary floating poiont number.

(D) | D 11 | D 10 |
| :--- | :--- |
| $\mathrm{RAD}=($ Degree $\mathrm{x} \pi / 180)$ | |

Explanation $\quad \mathbf{S}$: source of the data (Radian). \mathbf{D} : result of the changes (Degree).

- Use the following formula to change radian to degree.
- \quad Degree $=$ Radian $\times(180 / \pi)$

Example When $\mathrm{X0}=\mathrm{On}$, assign the degree of binary floating point number (D1, D0). Once the dregree is chaned to radian, save it in the (D11, D10), the value is a binary

	Bit Devices			Word Devices								16-bit command (5 STEPS)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	- -	-	-
S1				*	*						*			
S2				*	*						*	32-bit command		
D				*	*						*	DEADD	DEADDP	
Operands: Please refer to the specifications of each model for the range of operands.												Flag signal: none		

Explanation $\quad \mathbf{S}_{\mathbf{1}}$: augend, $\mathbf{S}_{\mathbf{2}}$: addend, \mathbf{D} : sum

- $\quad \mathbf{S}_{1} \mathbf{S 1}+\mathbf{S} 2=\mathbf{D}$. The floating point value in S1 and S2 are added and the result is stored in \mathbf{D}. All calculation are done using binary floating poiont number.
- If the source operand $\mathbf{S 1}$ or $\mathbf{S} \mathbf{2}$ is specified as constant K or H , the constant will automatically be converted to binary floating point value for the addition operation.
$\mathbf{S 1}$ and $\mathbf{S} 2$ can designate the same register. In this case, if the instruction is specified as "continuous execution instruction" (generally DEADDP instruction) and the drive contact is ON , the register will be added once in every scan.

Example

- When $\mathrm{X0}=\mathrm{On}$, the sum of binary floating point number (D1, D0) + binary floating point number (D3, D2) will be saved in (D11, D10).

| X0 | | | |
| :--- | :--- | :--- | :--- | :--- |
| DEADD | D0 | D2 | D10 |

- When $\mathrm{X} 2=\mathrm{On}$, the sum of binary floating point number

	Bit Devices			Word Devices								16-bit command (5 STEPS)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S1				*	*						*				
S2				*	*						*	32-bit	and		
D				*	*						*	DESU		SSU	

Operands:
Please refer to the specifications of each model for the Flag signal: none range of operands.
Explanation
S1: Minuend S2: Subtrahend D: Subtraction result
$\mathbf{S 1}-\mathbf{S 2}=\mathbf{D}$. The floating point value in $\mathbf{S 2}$ is subtracted from the floating point value in $\mathbf{S 1}$ and the result is stored in \mathbf{D}. The subtraction is conducted in binary floating point format.

- If \mathbf{S}_{1} or \mathbf{S}_{2} is designated as constant K or H , the instruction will convert the constant into a binary floating point value before the operation.
- $\quad S_{1}$ and S_{2} can designate the same register. In this case, if the instruction is specified as "continuous execution instruction" (generally DESUBP instruction) and the drive contact is ON, the register will be subtracted once in every scan.

Example

- When $\mathrm{XO}=\mathrm{ON}$, binary floating point value (D1, D0) minuses binary floating point value (D3, D2) and the result is stored in (D11, D10).

X0	DESUB	D0	D2	D10

■ When X2 = ON, K1234 (automatically converted into binary floating point value) minuses binary floating point (D1, D0) and the result is stored in (D11, D10).

X 2	DESUB	K1234	D0	D10

	Bit Devices			Word Devices								16-bit command (5 STEPS)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S1				*	*						*				
S2				*	*						*	32-bit			
D				*	*						*	DEMU		DEMU	

Operands:
Please refer to the specifications of each model for the Flag signal: none range of operands.

S1: Multiplicand S2: Multiplier D: Multiplication result

- $\quad \mathbf{S 1} \times \mathbf{S 2}=\mathbf{D}$. The floating point value in $\mathbf{S} 1$ is multiplied with the floating point value in $\mathbf{S 2}$ and the result is \mathbf{D}. The multiplication is conducted in binary floating point format
- If $\mathbf{S} \mathbf{1}$ or $\mathbf{S} \mathbf{2}$ is designated as constant K or H , the instruction will convert the constant into a binary floating point value before the operation

■ S1 and $\mathbf{S 2}$ can designate the same register. In this case, if the instruction is specified as "continuous execution instruction" (generally DEMULP instruction) and the drive contact is ON , the register will be multiplied once in every scan

- When $\mathrm{X} 1=\mathrm{ON}$, binary floating point (D1, D0) multiplies binary floating point (D11, D10) and the result is stored in (D21, D20).

X1	DEMUL	D0	D10	D20

- When $\mathrm{X} 2=\mathrm{ON}, \mathrm{K} 1234$ (automatically converted into binary floating point value) multiplies binary floating point (D1, D0) and the result is stored in (D11, D10).

X2	DEMUL	K1234	D0	D10

| API | | | EDIV | | $\boldsymbol{S}_{1} \boldsymbol{S}_{2}$ | D |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Floating Point Division

	Bit Devices			Word Devices								16-bit command (5 STEPS)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S1				*	*						*				
S2				*	*						*	32-bit	and		
D				*	*						*	DEDI		DEDI	

Operands:
Please refer to the specifications of each model for the Flag signal: none range of operands.

Explanation
S1: Dividend S2: Divisor D: Quotient and Remainder

- $\mathbf{S 1} \div \mathbf{S 2}=\mathbf{D}$. The floating point value in $\mathbf{S} 1$ is divided by the floating point value in $\mathbf{S 2}$ and the result is stored in \mathbf{D}. The division is conducted in binary floating point
- If \mathbf{S}_{1} or \mathbf{S}_{2} is designated as constant K or H , the instruction will convert the constant into a binary floating point value before the operation.
- If $\mathbf{S 2}=0$, operation error will occur, the instruction will not be executed

Example When $\mathrm{X} 1=\mathrm{ON}$, binary floating point value of (D1, D0) is divided by binary floating point (D11, D10)and the quotient and remainder is stored in (D21, D20).

X1	DEDIV	D0	D10	D20

When X2 = ON, binary floating point value of (D1, D0) is divided by K1234 (automatically convertedto binary floating point value) and the result is stored in (D11, D10).

X2	DEDIV	D0	K1234	D10

API	EXP			S \mathbb{D}
124	D	\mathbf{P}	Float Exponent Operation	

Explanation
S: Exponent D: Operation result

- The base is $\mathrm{e}=2.71828$ and exponent is \mathbf{S}
- $[\mathbf{D}+1, \mathbf{D}]=\operatorname{EXP}^{[} \mathbf{S}+\mathbf{1}, \mathbf{s}{ }^{\text {] }}$
- Both positive and negative values are valid for \mathbf{S}. Register \mathbf{D} has to be 32-bit format. Operation is conducted in floating point value, so the value in \mathbf{S} needs to be converted into floating value before exponent operation.

■ The content in $\mathbf{D}=e^{\mathrm{S}} ; \mathrm{e}=2.71828$ and \mathbf{S} is the specified exponent.

Example - When M0 $=\mathrm{ON}$, convert (D1, D0) to binary floating value and save the result in (D11, D10).

- Wehen M1 = ON, perform exponent operation with (D11, D10) as the exponent. The value is saved in register (D21, D20) in binary floating format.

API		LN		S
125	\mathbf{D}	\mathbf{P}		Float Natural Logarithm Operation

	Bit Devices			Word Devices								16-bit command (5 STEPS)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S				*	*						*	32-bit command			
D				*	*						*				
Operands: Please refer to the specifications of each model for the range of operands.												Flag s	----	DLNP	

S: Source device D: Operation result

- The base is $\mathrm{e}=2.71828$ and exponent is \mathbf{S}
- $[\mathbf{D}+\mathbf{1}, \mathbf{D}]=\operatorname{EXP}^{[} \mathbf{s}+\mathbf{1}, \mathbf{s}$]

■ Only a positive number is valid for \mathbf{S}. Register \mathbf{D} has to be 32-bit format. Operation is conducted in floating point value, so the value in \mathbf{S} needs to be converted into floating value before exponent operation.

- The content in $\mathbf{D}=e^{s} ; e=2.71828$ and \mathbf{S} is the specified data source
- $\mathrm{eD}=\mathbf{S}$. The content of $\mathbf{D}=\mathrm{LN} \mathbf{S}$, where the value in \mathbf{S} is specified by users.

Example - When M0 $=\mathrm{ON}$, convert (D1, D0) to binary floating value and save the result in (D11, D10).

- When M1= ON, perform natural logarithm operation with (D11, D10) as the antilogarithm. The value is saved in register (D21, D20) in binary floating format.

Explanation
 S: Source device D: Operation result

- This instruction performs a square root operation on the floating point value in \mathbf{S} and stores the result in \mathbf{D}. All data will be operated in binary floating point format and the result will also be stored in floating point format.
- If the source device \mathbf{S} is specified as constant K or H , the integer value will automatically be converted to binary floating value.

Example - When $\mathrm{X0}=\mathrm{ON}$, the square root of binary floating point ($\mathrm{D} 1, \mathrm{D} 0$) is stored in (D11, D10) after the operation of square root.

$$
\underset{\substack{\text { Binary floating } \\ \text { point }}}{\sqrt{(\text { D1, D0) }} \rightarrow \underset{\substack{\text { Binary floating } \\ \text { point }}}{(\text { D11, D10) }}) .}
$$

- When $\mathrm{X} 2=\mathrm{ON}$, the square root of K 1234 (automatically converted to binary floating value) is stored in (D11, D10).

X 2	DESQR	K1234	D 10
H			

API		INT		S ©	Float to Integer
129	D		P		

	Bit Devices			Word Devices								16-bit command (5 STEPS)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D			
S											*	32-bit command		
D											*	: DI -bit	DINTP	
Please refer to the specifications of each model for the range of operands.												Flag signal: none		

Explanation ■ S: Source device D: Operation result

- The binary floating point value in the register \mathbf{S} is converted to BIN integer and stored inregister \mathbf{D}. The decimal of the operation result will be left out.
- This instruction is the opposite of the API 49 (FLT) instruction.

Example ■ When $\mathrm{X} 0=\mathrm{ON}$, the binary floating point value of (D1, D0) will be converted to BIN integer andthe result is stored in D10. The decimal of the result will be left out.

- When $\mathrm{X} 1=\mathrm{ON}$, the binary floating point value of (D21, D20) will be converted to BIN integerand the result is stored in (D31, D30). The decimal of the result will be left out.

API			SIN		S
130	D		P	Sine	

	Bit Devices			Word Devices								16-bit command (5 STEPS)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D			
S				*	*						*	32-bit command		
D											*	DSIN DSINP		
Please refer to the specifications of each model for the Flag signal: none range of operands.														

Explanation
S: Source device $\left(0^{\circ} \leqq \mathbf{S}<360^{\circ}\right)$
D: Operation result

- The value in \mathbf{S} can be set as radian.
- Radian mode. RAD $=$ degree $\times \pi / 180$.
- SIN instruction performs sine operation on \mathbf{S} and stores the result in \mathbf{D}.

See the figure below for the relation between the radian and the operation result:

Example

- When XO = ON, DSIN instruction conducts sine operation on binary
floating value in (D1, D0) and stores the SIN value in (D11, D10) in binary floating format.

	Bit Devices			Word Devices								16-bit command (5 STEPS)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D			
S				*	*						*	32-bit command		
D											*			
Operands: Please refer to the specifications of each model for the range of operands.												Flag signal: none	DCOSP	

Explanation
S: Source device $\left(0^{\circ} \leqq \mathbf{S}<360^{\circ}\right)$
D: Operation result

- The value in \mathbf{S} can be set as radian or degree by flag M1018.
- M1018 = OFF, radian mode. RAD $=$ degree $\times \pi / 180$.

■ M1018 = ON, degree mode. Degree range: $0^{\circ} \leqq$ degree $<360^{\circ}$.

- If result to $0, \mathrm{M} 1020=\mathrm{On}$.
- COS instruction performs cos operation on \mathbf{S} and stores the result in \mathbf{D}

See the figure below for the relation between the radian and the operation result:

Example ■ When $\mathrm{XO}=\mathrm{ON}, \mathrm{DCOS}$ instruction conducts cosine operation on binary floating value in (D1, D0) and stores the COS value in (D11, D10) in binary floating format.

	Bit Devices			Word Devices								16-bit command (5 STEPS)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D			
S				*	*						*	32-bit command		
D											*			
Operands: Please refer to the specifications of each model for the range of operands.												Flag signal: none		

Explanation - S: Source device $\left(0^{\circ} \leqq \mathbf{S}<360^{\circ}\right)$ D: Operation result

- The value in \mathbf{S} can be set as radian or degree by flag M1018.
- M1018 $=$ OFF, radian mode. RAD $=$ degree $\times \pi / 180$.
- M1018 $=$ ON, degree mode. Degree range: $0^{\circ} \leqq$ degree $<360^{\circ}$.
- When the operation result $=0, \mathrm{M} 1020=\mathrm{On}$.

■ TAN instruction performs tangent operation on \mathbf{S} and stores the result in \mathbf{D}.
See the figure below for the relation between the radian and the operation result

Example When $\mathrm{X} 0=\mathrm{ON}$, DTAN instruction performs tangent operation on the radian value in (D1, D0) and stores the TAN value in (D11, D10) in binary floating format

	Bit Devices			Word Devices								16-bit command (5 STEPS)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D			
S				*	*						*	32-bit command		
D											*			
Operands:												DASIN DASINP		

Explanation
S: Source device (binary floating value)
D: Operation result

- ASIN value $=\sin ^{-1}$

See the figure below for the relation between input \mathbf{S} and the result:

Example
When X0 = ON, DASIN instruction performs arc sine operation on the binary floating value in (D1, D0) and stores the ASIN value in (D11, D10) in binary floating format..

	Bit Devices			Word Devices								16-bit command (5 STEPS)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S				*	*						*	32-bit command			
D											*				
Operands: Please refer to the specifications of each model for the range of operands.												DACOS		$\begin{gathered} \text { DACOS } \\ \mathrm{P} \end{gathered}$	
												Flag sig	one		

Explanation
S : Source device (binary floating value)
D: Operation result

- \quad ACOS value $=\cos ^{-1}$

See the figure below for the relation between the input \mathbf{S} and the result:

Example
When X0 $=\mathrm{ON}$, DACOS instruction performs arc cosine operation on the binary floating value in (D1,D0) and stores the ACOS value in (D11, D10) in binary floating format.

	Bit Devices			Word Devices								16-bit command (5 STEPS)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D			
S				*	*						*	32-bit command		
D											*			
Operands:												DATAN DATANP		
Please refer to the specifications of each model for the range of operands.												Flag signal: none		

Explanation
S: Source device (binary floating value) D: Operation result

- ATAN value $=\tan ^{-1}$

See the figure below for the relation between the input and the result:

Example When $\mathrm{XO}=\mathrm{ON}$, DATAN instruction performs arc tangent operation on the binary floating value in(D1, D0) and stores the ATAN value in (D11, D10) in binary floating format.

API		SINH			
136	D		P	(S) D	Hyperbolic Sine

	Bit Devices			Word Devices								16-bit command (5 STEPS)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D			
S				*	*						*	32-bit command		
D											*			
Operands: Please refer to the specifications of each model for the range of operands.												Flag signal: none	DSINHP	

Explanation \quad S: Specified source (binary floating point) D: Area where calculated result is stored

- Sinh value $=\left(\mathrm{e}^{\mathrm{s}}-\mathrm{e}^{-\mathrm{s}}\right) / 2$

Example When $\mathrm{XO}=\mathrm{On}$, specify binary floating point (D1, D0). Calculate SINH value and save the result in (D11, D10). The result stored in (D11, D10) is all in binary floating point format.

	Bit Devices			Word Devices								16-bit command (5 STEPS)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S				*	*						*	32-bit command			
D											*	DCOSH	dand	DCOSHP	
Operands: Please refer to the specifications of each model for the range of operands.												Flag sig	none	DCOSHP	

Explanation \quad S: Specified source (binary floating point) D: Area where calculated result is stored

- \quad cosh value $=\left(e^{s}+e^{-s}\right) / 2$

Example When $\mathrm{XO}=\mathrm{On}$, specify binary floating point (D1, D0). Calculate COSH value and save
the result in (D11, D10). The

- result stored in (D11, D10) is all in binary floating point format.

(S) \square binary floating point
(D) \square COSH value binary floating point

Explanation \quad S: Specified source (binary floating point) D: Area where calculated result is stored

- Tanh value $=\left(e^{s}-e^{-s}\right) /\left(e^{s}+e^{-s}\right)$

Example When $\mathrm{X} 0=$ On, specify binary floating point (D1, D0). Calculate ASIN value and save the result in (D11, D10). The

- The result stored in (D11, D10) is all in binary floating point format.

Explanation

S1: Hour of comparison time, setting range is K0~K23
S2: Minute of comparison time, setting range is K0~K59 S3:
Second of comparison time, setting range is K0~K59
S: Current time of calendar (occupies 3 continuous devices)
D: Comparison result (occupies 3 continuous devices)
The range of operand S1, S2, S3: S1=0~23, S2 =S3=K0~59

- S1, S2, S3 is compared to the current value of the head address \mathbf{S} and save the comparsion result in \mathbf{D}.
- S1 is the hour of current time and the content is K0~K23. S2 is the minute of current time and the content is K0~K59. S3 is the second of current time and the content is K0~K59
- The current time of real time clock specified by \mathbf{S} is read by using TRD command previously and then compared by using TCMP command. If the content of \mathbf{S} exceeds the range, it will result in "operation error". At this time, the command won't be executed and M1067=On, M1068=On, records error code 0E1A (HEX) in D1067.

Example When $\mathrm{X} 10=$ On, the command is executed and the current time of real time clock in (D20~D22) is compared to the set value 12:20:45 and the result is shown at $\mathrm{M} 10 \sim \mathrm{M} 12$. When X10 goes from $\mathrm{On} \rightarrow$ Off, the command is not executed but the On/Off state before M10~M12 is kept. Connect M10~M12 in series or in parallel and then the result of \geqq, \leqq, \neq are given.

TCMP	K12	K20	K45	D20	M10

	Bit Devices			Word Devices							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
S1				*	*	*	*	*	*	*	*
S2				*	*	*	*	*	*	*	*
S									*	*	*
D		*	*								

Operands:

16-bit command (5 STEPS)
 TZCP - TZCPP

32-bit command

Flag signal: none

Please refer to the specifications of each model for the range of operands.

- S1: Lower limit time data S2: Upper limit time data S: Current time of calendar D: Comparison result (occupies 3 continuous devices)
- \mathbf{S} is compared to the time period of S1~ S2 and the comparsion result is stored in
D.

■ S1, S1 +1, S1 +2: respectively represent "Hours", "Minutes", "Seconds" of the lower limit time data.

■ S2, S2 +1, S2 +2: respectively represent "Hours", "Minutes", "Seconds" of the upper limit time data。

■ S , S +1, S +2: respectively represent "Hours", "Minutes", "Seconds" of the current time of perpetual calender.

- The current time of real time clock specified by \mathbf{S} is read by using TRD command previously and then compared by using TZCP command. If the content of $\mathbf{S}, \mathbf{S 1}, \mathbf{S} 2$ exceeds the range, it will result in "operation error". At this time, the command won't be executed and M1068=On.
- If $\mathbf{S}<\mathbf{S}$ 1, and if $\mathbf{S}<\mathbf{S} 2, \mathbf{D}$ is On. If $\mathbf{S}>\mathbf{S}_{\mathbf{1}}$ and if $\mathbf{S}>\mathbf{S} 2, \mathbf{D}+2$ is On. Besides these two situations, $\mathbf{D}+1$ is On.

Example - When X10 = On, the TZCP command is executed and one of M10~M12 will be On. When X10= Off, the TZCP command is not executed but the state of M10~M12 before X10=Off is kept.

	Bit Devices			Word Devices								16-bit command (5 STEPS)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	TADD		TADD	
S1									*	*	*				
S2									*	*	*	32-b	-	-	
D									*	*	*				

Operands:
Please refer to the specifications of each model for the range of operands.

- Flag signal: M1020 (Zero flag) M1022 (Carry flag) M1068 (calendar error)

Explanation

■ S1: Time augend S2: Time addend D: Addition result
Operand S1, S2, D occupies 3 continuous devices

- $\mathbf{S 1}+\mathbf{S 2}=\mathbf{D}$. The time data in the register specified by $\mathbf{S 1}$ is added to the time data in the register specified by $\mathbf{S 2}$ and the addition result is stored in the register specified by D.
- If the time data in $\mathbf{S 1}$, $\mathbf{S} \mathbf{2}$ exceeds the range, it will result in "operation error". At this time, the command won't be executed and M1067=On, M1068=On, records error code 0E1A (HEX) in D1067.
- If the addition result is in a value greater than 24 hours, the Carry flag M1022=On. The value of the result shows in \mathbf{D} is the time remaining above 24 hours.
- If the addition result is equal to 0 (zero, 0 hour, 0 minute, 0 second), the Zero flag M1020= On.

Example

- When $\mathrm{X} 10=\mathrm{On}$, the command is executed. Add the time data specified by D0~D2 and D10~D12 and store the result in the register specified by D20~D22.

8:10:20
6:40:6
14: 50: 26

Bit Devices				Word Devices							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
S 1									$*$	$*$	$*$
S 2									$*$	$*$	$*$
D									$*$	$*$	$*$

Operands:
Please refer to the specifications of each model for the range of operands.

16-bit command (5 STEPS)
TSUB
32-bit command

- Flag signal: M1020 (Zero flag) M1022 (Carry flag) M1068 (calendar error)

Explanation

- S1: Time Minuend S2: Time Subtrahend D: Subtraction result Operand S1, S2, D occupies 3 continuous devices.
■ 將 $\mathbf{S 1} \mathbf{- S} \mathbf{S}=\mathbf{D}$. The time data in the register specified by $\mathbf{S} 2$ is subtracted from the time data in the register specified by S1 and the result is stored in the register specified by \mathbf{D}

■ If the time data in S1, S2 exceeds the range, it will result in "operation error". At this time, the command won't be executed and M1067=On, M1068=On, records error code 0E1A (HEX) in D1067.

- If the subtraction result is a negative value (less than 0), the Barrow Flag M1021= On. The value of the result shows in \mathbf{D} is the time remaining above 24 (twenty-four) hour.
- If the subtraction result is equal to 0 (zero, 0 hour, 0 minute, 0 second), the Zero flag M1020= On.
- When $\mathrm{X} 10=\mathrm{On}$, the command is executed. The time data specified by D10~D12 is subtracted from the time data specified by D0~D2 and the result is stored in the register specified by D20~D22.

X10	TSUB	D0	D10	D20

D0 20(hr)	-	D10 14(hr)	\rightarrow	D20 5(hr)
D1 20(min)		D11 30(min)		D21 49(min
D2 5(sec)		D12 8(sec)		D22 57(sec

$$
\text { 20: 20:5 14: 30: } 8 \quad \text { 5: 49:57 }
$$

Explanation - \mathbf{S}_{1} : Time Minuend \mathbf{S}_{2} : Time Addend D : Addition Result

- D: The device stores the current time of calendar (occupies 7 continuous devices)
- A perpetual calender clock is built in the EH/SA series PLC and this clock provide year (A.D.), week, month, date, hours, minutes and seconds total 7 data devices stored in D1063~D1069. The function of TRD command is for program designer to read the current time of perpetual calender directly and store the reading data in the 7 data registers specified by \mathbf{D}.
- D1063 reads only the last two digits of an year.
- When $\mathrm{X} 0=$ On, read the current time of perpetual calender to the specified register D0~D6.

■ The content of D1064: 1 is indicated Monday, 2 is indicated Tuesday,..., 7 is indicated Sunday.

special D	Item	content	\rightarrow	normal D	Item
D1063	Year	00~99		D0	Year
D1064	week	1~7	\rightarrow	D1	week
D1065	month	1~12	\rightarrow	D2	month
D1066	day	1~31	\rightarrow	D3	day
D1067	hour	0~23	\rightarrow	D4	hour
D1068	minute	0~59	\rightarrow	D5	minute
D1069	second	0~59	\rightarrow	D6	second

API				
170	GRY		\mathbf{P}	S D

	Bit Devices			Word Devices								$\frac{16-\text { bit command (5 STEPS) }}{\text { GRY }}$
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	
S				*	*	*	*	*	*	*	*	32-bit command
D							*	*	*	*	*	
Operands: Please refer to the specifications of each model for the range of operands.												. Flag signal: none

Explanation
S: Source device D: Destination to store Gray code result

The BIN value in the specified device by S is converted to the GRAY CODE equivalent and the converted result is stored in the area specified by \mathbf{D}.

- The range of \boldsymbol{S} that can be converted to the GRAY CODE is shown as follows:

16-bit command: 0~32,767
32-bit command : 0~2,147,483,647
If the BIN value is outside the range shown above, it is determined as "Operation Error". At this time, the command won't be executed

Example \quad When $\mathrm{XO}=\mathrm{On}$, constant K 6513 is converted to the GRAY CODE and stored in the D0.

- S: Source GRAY CODE D: Destination which stores converted BIN result
- The GRAY CODE value in the specified device by S is converted to the BIN value equivalent and the converted result is stored in the area specified by \mathbf{D}.
- This command can be used to read the value from an absolute position type encoder (it is generally a gray code encoder) which is connected to PLC inputs. Convert the value to the BIN value and store it in the specified register.
- The range of S that can be converted to the GRAY CODE is shown as follows:

16-bit command : 0~32,767
32-bit command : 0~2,147,483,647
If the GRAY CODE value is outside the range shown above, it is determined as "Operation Error".

- When $\mathrm{X} 20=0 \mathrm{n}$, the GRAY CODE value in the absolute position type encoder connected to $\mathrm{X0} \sim \mathrm{X17}$ inputs is converted to BIN value and stored in D10.

	Bit Devices			Word Devices								16-bit command (5 STEPS)	
	X	Y	M	K	H	KnX KnY KnM			T	C	D	LD\#	
S_{1}				*	*	*	*	*	*	*	*		
S_{2}				*	*	*	*	*	*	*	*	32-bit command (9 STEPS)	
	and	s:	,									DLD\#	

1. \mathbf{S}_{1} : Data source device $1 \quad \mathbf{S}_{2}$: Data source device 2
2. This instruction compares the content in \mathbf{S}_{1} and \mathbf{S}_{2}. If the result is not " 0 ", the continuity of the instruction is enabled. If the result is " 0 ", the continuity of the instruction is disabled.
3. LD\# (\#: \& , |, ^) instruction is used for direct connection with BUS.

API No.	$\begin{gathered} 16 \text {-bit } \\ \text { instruction } \end{gathered}$	$\begin{gathered} 32 \text {-bit } \\ \text { instruction } \end{gathered}$	Continuity condition				No-continuity condition			
215	LD\&	DLD\&	S_{1}	\&	S_{2}	$\neq 0$	S_{1}	\&	S_{2}	0
216	LD\|	DLD	S_{1}	\|	S_{2}		S_{1}	\|	S_{2}	$=0$
217	LD^	DLD^		\wedge	S_{2}		S_{1}	\wedge	S_{2}	

4. \&: Logical "AND" operation
5. I: Logical "OR" operation
6. \wedge : Logical "XOR" operation
7. When the result of logical AND operation of CO and $\mathrm{C} 10 \neq 0, \mathrm{Y} 10=\mathrm{On}$.
8. When the result of logical OR operation of D200 and D300 $=0$ and $\mathrm{X} 1=\mathrm{On}$, Y11 = On will be retained.

9. S_{1} : Data source device $1 \quad S_{2}$: Data source device 2
10. This instruction compares the content in \mathbf{S}_{1} and \mathbf{S}_{2}. If the result is not " 0 ", the continuity of the instruction is enabled. If the result is " 0 ", the continuity of the instruction is disabled.
11. AND\# (\#: \&, $\left.\left.\right|^{\wedge}\right)$ is an operation instruction used on series contacts.

API No.	$\begin{gathered} 16 \text {-bit } \\ \text { instruction } \end{gathered}$	$\begin{gathered} 32 \text {-bit } \\ \text { instruction } \end{gathered}$	Continuity condition				No-continuity condition			
218	AND \&	DAND\&	S_{1}	\&	S_{2}		S_{1}	\&	S_{2}	0
219	AND\|	DAND	S_{1}		S_{2}		S_{1}		S_{2}	$=0$
220	AND^	DAND^	S_{1}	\wedge	S_{2}	$\neq 0$	S_{1}	\wedge	S_{2}	$=0$

4. \&: Logical "AND" operation
5. |: Logical "OR" operation
6. ^: Logical "XOR" operation

Example

1. When $\mathrm{X} 0=\mathrm{On}$ and the result of logical $A N D$ operation of $C 0$ and $C 10 \neq 0, Y 10=$ On.
2. When $\mathrm{X} 1=$ Off and the result of logical $O R$ operation of D 10 and $\mathrm{D} 0 \neq 0$ and $\mathrm{X} 1=$ On, Y11 = On will be retained.
3. When $\mathrm{X} 2=$ On and the result of logical XOR operation of 32-bit register D200 (D201) and 32-bit register D100 (D101) $=0$ or M3 $=$ On, M50 $=$ On.

4. \mathbf{S}_{1} : Data source device $1 \quad \mathbf{S}_{2}$: Data source device 2
5. This instruction compares the content in \mathbf{S}_{1} and \mathbf{S}_{2}. If the result is not " 0 ", the continuity of the instruction is enabled. If the result is " 0 ", the continuity of the instruction is disabled.
6. OR\# (\#: \& , |, ${ }^{\wedge}$) is an operation instruction used on parallel contacts.

API No.	$\begin{gathered} 16 \text {-bit } \\ \text { instruction } \end{gathered}$	$\begin{gathered} 32 \text {-bit } \\ \text { instruction } \end{gathered}$	Continuity condition				No-continuity condition			
221	OR\&	DOR\&	S_{1}	\&	S_{2}		S_{1}	\&	S_{2}	$=0$
222	OR\|	DOR\|	S_{1}	1	S_{2}		S_{1}	\|	S_{2}	$=0$
223	OR^{\wedge}	DOR^		\wedge				\wedge	S_{2}	

4. \&: Logical "AND" operation
5. I: Logical "OR" operation
6. \wedge : Logical "XOR" operation

When X1 $=$ On and the result of logical AND operation of C 0 and $\mathrm{C} 10 \neq 0, \mathrm{Y} 10=\mathrm{On}$.
2. M60 will be On, if $X 2$ and $M 30$ are On with one of the following two conditions: 1 . The OR operation result of 32-bit register D10 (D11) and 32-bit register D20(D21) does not equal to 0.2. The XOR operation result of 32-bit counter C235 and 32bits register D200 (D201) does not equal 0.

1. \mathbf{S}_{1} : Data source device $1 \quad \mathbf{S}_{2}$: Data source device 2
2. This instruction compares the content in \mathbf{S}_{1} and \mathbf{S}_{2}. Take API224 (LD=) for example, if the result is " $=$ ", the continuity of the instruction is enabled. If the result is " \neq ", the continuity of the instruction is disabled.
3. LD $※$ ($(=,>,<,<>, \leq, \geq$) instruction is used for direct connection with BUS.

API No.	16 -bit instruction	32 -bit instruction	Continuity condition	No-continuity condition
224	$\mathrm{LD}=$	$\mathrm{DLD}=$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
225	$\mathrm{LD}>$	$\mathrm{DLD}>$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$
226	$\mathrm{LD}<$	$\mathrm{DLD}<$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$
228	$\mathrm{LD}<>$	$\mathrm{DLD}<>$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
229	$\mathrm{LD}<=$	$\mathrm{DLD}<=$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$
230	$\mathrm{LD}>=$	$\mathrm{DLD}>=$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$

Example

1. When the content in $\mathrm{C} 10=\mathrm{K} 200, \mathrm{Y} 10=\mathrm{On}$.
2. When the content in $\mathrm{D} 200>\mathrm{K}-30$ and $\mathrm{X} 1=\mathrm{On}, \mathrm{Y} 11=\mathrm{On}$ will be retained.

	Bit Devices			Word Devices								16-bit command (5 STEPS)			
	X	Y	M	K	H	KnX KnY KnM			T	C	D	AND*			
S_{1}				*	*	*	*	*	*	*	*				
\mathbf{S}_{2}				*	*	*	*	*	*	*	*	32-bit com	nd		
			rand		$<>\text {, }$	$\begin{aligned} & \leq, \geq \\ & \text { ant } \end{aligned}$		ach				Flag signa			

Explanation

1. \mathbf{S}_{1} : Data source device $1 \quad \mathbf{S}_{2}$: Data source device 2
2. This instruction compares the content in \mathbf{S}_{1} and \mathbf{S}_{2}. Take API232 (AND=) for example, if the result is " $=$ ", the continuity of the instruction is enabled. If the result is " \neq ", the continuity of the instruction is disabled.
3. AND ($(\ldots:=,>,<,<>, \leq, \geq$) is a comparison instruction is used on series contacts

API No.	$16-$ bit instruction	32-bit instruction	Continuity condition	No-continuity condition
232	AND $=$	DAND $=$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
233	AND $>$	DAND $>$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$
234	AND $<$	DAND $<$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$
236	AND $<>$	DAND $<>$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
237	AND $<=$	DAND $<=$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$
238	AND $>=$	DAND $>=$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$

Example

1. When $\mathrm{X} 0=\mathrm{On}$ and the content in $\mathrm{C} 10=\mathrm{K} 200, \mathrm{Y} 10=\mathrm{On}$.
2. When $\mathrm{X} 1=\mathrm{Off}$ and the content in $\mathrm{D} 0 \neq \mathrm{K}-10, \mathrm{Y} 11=\mathrm{On}$ will be retained.
3. When $\mathrm{X} 2=$ On and the content in 32-bit register D 0 (D11) $<678,493$ or $\mathrm{M} 3=$ On, M50 = On.

Explanation

1. \mathbf{S}_{1} : Data source device $1 \quad \mathbf{S}_{2}$: Data source device 2
2. This instruction compares the content in \mathbf{S}_{1} and \mathbf{S}_{2}. Take API240 (OR=) for example, if the result is " $=$ ", the continuity of the instruction is enabled. If the result is " \neq ", the continuity of the instruction is disabled.
3. $\mathrm{OR} \%$ ($※:=,>,<,<>, \leq, \geq$) is an comparison instruction used on parallel contacts.

API No.	16 -bit instruction	32 -bit instruction	Continuity condition	No-continuity condition
232	AND $=$	DAND $=$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
233	AND $>$	DAND $>$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$
234	AND $<$	DAND $<$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$
236	AND $<>$	DAND $<>$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
237	AND $<=$	DAND $<=$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$
238	AND $>=$	DAND $>=$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$

Example

1. When $\mathrm{X} 1=\mathrm{On}$ and the present value of $\mathrm{C} 10=\mathrm{K} 200, \mathrm{Y} 0=\mathrm{On}$.
2. When $\mathrm{X} 1=\mathrm{Off}$ and the content in $\mathrm{D} 0 \neq \mathrm{K}-10, \mathrm{Y} 11=\mathrm{On}$ will be retained.
3. M50 will be On when $\mathrm{X} 2=O n$ and the content of 32-bit register D0(D11) <678,493 or M3= On.

API				Floating Point Contact Type 275~ 280	

Explanation
 S1: Source device 1 S2: Source device 2

- This instruction compares the content in \mathbf{S}_{1} and \mathbf{S}_{2}. Take "FLD=" for example, if the result is " $=$ ", the continuity of the instruction is enabled. If the result is " \neq ", the continuity of the instruction is disabled.
- The user can specify the floating point value directly into operands S1 and S2 (e.g. F1.2) or store the floating point value in D registers for further operation.
- FLD※ instruction is used for direct connection with left hand bus bar.

API No.	32-bit instruction	Continuity condition	Discontinuity condition
275	FLD $=$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
276	FLD $>$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$
277	FLD $<$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$
278	FLD $<>$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
279	FLD $<=$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$
280	FLD $>=$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$

Example
When the content in D 100 (D101) $\leq \mathrm{F} 1.2$ and X 1 is $\mathrm{ON}, \mathrm{Y} 21=\mathrm{ON}$ and latched.

Explanation

S1: Source device 1 S2: Source device 2

- This instruction compares the content in S1 and S2. Take "FAND =" for example, if the result is " $=$ ", the continuity of the instruction is enabled. If the result is " \neq ", the continuity of the instruction is disabled.
- The user can specify the floating point value directly into operands S1 and S2 (e.g. F1.2) or store the floating point value in D registers for further operation.
- FAND※ instruction is used for serial connection with contacts

API No.	32-bit instruction	Continuity condition	Discontinuity condition
281	FAND $=$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
282	FAND $>$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$
283	FAND $<$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$
284	FAND $<>$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
285	FAND $<=$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$
286	FAND $>=$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$

Example

- When X 1 is OFF and the content in D100(D101) is not equal to $\mathrm{F} 1.2, \mathrm{Y} 21=\mathrm{ON}$ and latched.

| API | \square | | |
| :---: | :--- | :--- | :--- | :--- |
| $287 \sim$
 292 | FOR※ | | Floating Point Contact Type
 Comparison OR $\%$ |

Explanation
S1: Source device 1 S2: Source device 2

- This instruction compares the content in $\mathbf{S 1}$ and $\mathbf{S 2}$. Take "FOR =" for example, if the result is " $=$ ", the continuity of the instruction is enabled. If the result is " \neq ", the continuity of the instruction is disabled
- The user can specify the floating point value directly into operands S1 and S2 (e.g. F1.2) or store the floating point value in D registers for further operation
- FOR※ instruction is used for parallel connection with contacts.

API No.	32-bit instruction	Continuity condition	Discontinuity condition
287	FOR $=$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
288	FOR $>$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$
289	FOR $<$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$
290	FOR $<>$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
291	FOR $<=$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$
292	FOR $>=$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$

Example

- When both X2 and M30 are On and the content in D100(D101) \geq F1.234, M60 $=$ ON..

16.6.5 Description to drive's special commands

| API | RPR | | (S1) (S2) | Read the AC motor drive's parameters |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 139 | | \mathbf{P} | | |

API	- WPR		(S1) (S2)	Write the AC motor drive's parameters
140		\mathbf{P}		

Bit Devices				Word Devices								16-bit command (5 STEPS)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	WPR	WPRP	
S_{1}				*	*						*			
S_{2}				*	*						*	32-bit command		
Operands: None												Flag signal: none		

Explanation \mathbf{S}_{1} : The data for writing. \mathbf{S}_{2} : The parameters address for the write data.

Example

1. It will read the data in parameter H 2100 of the C 2000 and write into $\mathrm{D} 0 ; \mathrm{H} 2101$ is read and write into D1.
2. When $\mathrm{M} 0=\mathrm{ON}$ data in D 10 will be written into Pr. H 2001 of C 2000 .
3. When $\mathrm{M} 1=\mathrm{ON}$, data in H 2 will be written into Pr. H 2001 of C 2000 , which is to activate the AC motor drive.
4. When $\mathrm{M} 2=\mathrm{ON}$, data in H 1 will be written into H 2000 of C 2000 , which is to stop the AC motor drive.
5. When data writing successfully, M1017 will be on.

RPR	H 2100	D0	
		RPR	H 2101
	D1		

API	FPID		(S1) S2 S3 S4	PID control for the AC motor drive
141		P	(S1) (S2)	PID control for the AC motor drive

Bit Devices				Word Devices								16-bit command	TEPS	
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	FPID	FPIDP	
S_{1}				*	*						*			
S_{2}				*	*						*	32-bit command		
S_{3}				*	*						*	- -	-	-
S_{4}				*	*						*	Flag signal: None		
Operands: None														

Explanation 1. \mathbf{S}_{1} : PID Feedback Selection(0-6 acc.to Pr.08-00), \mathbf{S}_{2} : Proportional Gain P, \mathbf{S}_{3} : Integral Time I, S4: Derivative control D
2. This command FPID can control the PID parameters of the AC motor drive directly, including Pr.08.00 PID feedback, Pr.08.01 Proportional gain (P), Pr.08.02 Integral time (I) and Pr.08.03 Derivative control (D)

1. Assume that when $\mathrm{M} 0=\mathrm{ON}, \mathbf{S}_{1}$ is set to 0 (PID function is disabled), $\mathbf{S}_{2}=0, \mathbf{S}_{3}=1$ (unit: 0.01 seconds) and $\mathbf{S}_{4}=1$ (unit: 0.01 seconds).
2. Assume that when $\mathrm{M} 1=\mathrm{ON}, \mathbf{S}_{1}$ is set to 0 (PID function is disabled), $\mathbf{S}_{2}=1$ (unit: 0.01), $\mathbf{S}_{3}=0$ and $\mathbf{S}_{4}=0$.
3. Assume that when $\mathrm{M} 2=\mathrm{ON}, \mathbf{S}_{1}$ is set to 1 (frequency is inputted by digital keypad), $\mathbf{S}_{2}=1$ (unit: 0.01), $\mathbf{S}_{3}=0$ and $\mathbf{S}_{4}=0$.
4. D1027: frequency command after PID calculation.

| API | | FREQ | | (S1) S2 | S3 |
| :--- | :--- | :--- | :--- | :--- | :--- | Operation control of the AC motor drive

1. \mathbf{S}_{1} : frequency command, \mathbf{S}_{2} : acceleration time, (Pr01-12) \mathbf{S}_{3} : deceleration time (Pr01-13).
2. This command FREQ can control frequency command, acceleration time and deceleration time of the AC motor drive. Special register control is shown as following:

M1025: controls RUN (On)/STOP (Off) of the drive. (Run is valid when Servo On (M1040 On).)
M1026: Operation directions FWD (On)/REV (Off) of the drive.
M1040: controls Servo On (On)/ Servo Off (Off).
M1042: enable quick stop(ON)/ disable quick stop(Off)
M1044: enable Stop (On)/ disable stop(Off)
M1052: frequency locked (On)/ disable frequency locked(Off)
3. S2, S3:Acceleration and deceleration time setting. Its decimal point must according to the Pr01-45 Time Unit for Acceleration/Deceleration and S Curve.

For example:
When Pr01-45=0 "Unit=0.01 sec"
The S2 of below Ladder diagram is set as 50 and it means acceleration is 0.5 second.

The S3 of below Ladder diagram is set as 60 and it means deceleration is 0.6 second.
4. WhenM11=Off, the drive frequency command will become 0 Hz .

1. M1025: controls RUN (On)/STOP (Off) of the drive. M1026: operation direction
2. When $\mathrm{M} 10=\mathrm{ON}$, setting frequency command of the AC motor drive to $\mathrm{K} 300(3.00 \mathrm{~Hz})$ and acceleration/deceleration time is 0 .
3. When $\mathrm{M} 11=\mathrm{ON}$, setting frequency command of the AC motor drive to $\mathrm{K} 3000(30.00 \mathrm{~Hz})$, acceleration time is 50 and deceleration time is 60 .

API	TORQ	P	S1	S2	Torque Control of AC Motor Drive
263	P				

Bit Devices				Word Devices								16-bit command (7 STEPS)
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	TORQ
S_{1}				*	*						*	
S_{2}				*	*						*	32-bit command
Operands: None												Flag signal: M1063

Explanation

1. \mathbf{S}_{1} : torque command (display in signed decimal with one decimal place)
\mathbf{S}_{2} : speed limit
2. This command can control torque command and speed limi. Special register control is shown as following:
M1040: controls Servo On(On)/ Servo Off(Off). Torque output and speed limit are defined by the setting of TORQ command when TORQ command is set when Servo is ON.
3. M1040: control Servo On(On)/ Servo Off(Off). M1063: target torque attained. D1060: control mode setting. D1053: actual torque.
4. When $\mathrm{M} 0=\mathrm{Off}$, setting torque command of the AC motor drive to $\mathrm{K}+300(+30.0 \%)$ and speed limit to $3000(30 \mathrm{~Hz})$.
5. When $\mathrm{M} 0=O$, setting torque command of AC motor drive to $\mathrm{K}-300(-30.0 \%)$ and speed limit to $3000(30 \mathrm{~Hz})$ 。
6. When $\mathrm{M} 10=\mathrm{On}, \mathrm{AC}$ motor drive begins to execute torque command.
7. When target torque is attained, M1063 will switch ON and flag signal will be blinking.

	Bit Devices			Word Devices								16-bit	and	TEPS)	
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S_{1}				*	*						*	32-bit command (5 steps)			
Operands: None												DPOS		DPOSP	
												Flag sig	10	M1070	

Explanation - \mathbf{S}_{1} : target position (signed decimal)

- This DPOS command can control the motor position of AC motor drive. Special register control is shown as following:

M1040: controls Servo On(On)/ Servo Off(Off). M1055: searching origin point. M1048: operate to the new position point. In the condition D1060 $=1$ (control mode is set to position mode), M1040=1 (Servo ON), and DPOS command is given; when M1048 is set from OFF to ON the AC motor drive will operate till the new position point.

1. M1040: controls Servo On(On)/ Servo Off(Off). M1064: target position attained. D1060: control mode setting. D1051(L) and D1052(H): actual position point.
2. When $\mathrm{X} 0=O n$, setting M1040 to ON (Servo On).
3. When $\mathrm{X} 1=O n$, setting DPOS position command to +300000 . It will delay for 1 second then set M1048 to ON (operate to the new position). Please observe if the D1051 value changes. When position is attained, M1064 will set to ON and Y0 will output an ON signal.

API	CANRX		S1 S2 S3	D	Read CANopen slave data
261					

Bit Devices				Word Devices								16-bit command (7 STEPS)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D			
S_{1}				*	*									
$\mathrm{S}_{\mathbf{S}}$				*	*							:32-bit command	-	-
S_{3}				*	*							Flag signal: M1028		
D									*	*	*			
Operand: none														

Explanation 1. $\mathbf{S}_{\mathbf{1}}$: Slave station number, $\mathbf{S}_{\mathbf{2}}$: main index, $\mathbf{S}_{\mathbf{3}}$: sub-index + bit length, \mathbf{D} : save address
2. Command CANRX can read the corresponding slave. Index. When executing this command, it will send SDO message to the slave. At this time, M1066 and M1067 are 0 but when reading is complete M1066 will set to 1 . If the slave replied an accurate response, the value will be written to the designated register and M1067 is now set to 1 . However, if the slave replied an inaccurate response, this error message will be recorded in D1076~D1079.

Example M1002: touch once to activate PLC and change K4M400=K1. After the change, different message will be displayed when M1066 is set to 1 .

API		CANTX		S1	(S2
264	S3	S4	Write CANopen slave data		

Explanation 1. \mathbf{S}_{1} : slave station number, \mathbf{S}_{2} : the address to write, \mathbf{S}_{3} : main index, \mathbf{S}_{4} : sub-index + bit length.
2. Command CANTX can read the corresponding index of the slave. When executing this command, it will send SDO message to the slave. At this time, M1066 and M1067 are 0 but when reading is complete M1066 will set to 1 . If the slave replied an accurate response, the value will be written to the designated register and M1067 is now set to 1 . However, if the slave replied an inaccurate response, this error message will be recorded in D1076~D1079.

API	CANFLS		D	Update the mapping special D of CANopen
$\mathbf{2 6 5}$				

Bit Devices				Word Devices								16-bit command (7 STEPS)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	FREQ	EQP	
Operands: None												32-bit command		
												$\frac{\text { 32-bit command }}{-}$	-	-
												Flag signal: M1028		

1. D : the special D for update.
2. CANFLS can update the Special D command. When it executes in read only mode, it sends equivalent message as CANRX to the slave and saves the slave response to this particular Special D. When it executes in read/write mode, it sends equivalent message as CANTX to the slave and saves this special D value to the corresponding slave.
3. M1066 and M1067 are both 0 . When reading is complete, M1066 will be 1 and this value will write to the designated register if the slave replies an accurate response. When slave replies a fault response then M 1067 will be 0 and this error message will be recorded to D1076~D1079.

API	ICOMR	P	$(S 1)(S 2)(D)$	Internal Communication Reader
320	D			

	Bit Devices			Word Devices								16-bit command (7 STEPS)			pulseprocessing
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S1				*	*						*				
S2				*	*						*	32-bit co	mmand		
S3				*	*						*	-	-	-	-
D				*	*						*				
	ran	ds:	one									Flag sign	al: M1077	M1078	M1079

Explanation $S 1$ slave station numbers2: Device chosen (0: AC motor drive 1: Internal PLC) 。
S3: Reading address
D: Saving device

- The ICOMR command can read the register of the AC motor drive and that of internal PLC from slave station.

Explanation S1：Slave station number S2 Device chosen（0：AC motor drive．，1：Internal PLC）
S3）：Reading address
（D）：Saving device
■ 此指令 ICOMW 可以寫値到從站的變頻器和所內置 PLC 的暫存器値 The ICOMW command can write the register of the AC motor drive and that of internal PLC from slave station．

Example

17.7 Error and Troubleshoot

Fault	ID	Fault Descript	Corrective Action
PLiC	48	Internal communication signal off	Check if shielded wire is properly inserted to communication port COM1.
PLod	50	Data write error	Check if there is error in the program and download the program again.
PLSv	51	Data write error when executing	Re-apply the power and download the program again.
PLdA	52	Program upload error	Upload again. If error occurs continuously, please return to the factory.
PLFn	53	Command error when download program	Check if there is error in the program and download the program again.
PLor	54	Program capacity exceeds memory capacity	Re-apply the power and download the program again.
PLFF	55	Command error when executing Check if there is error in the program and download the program again.	
PLSn	56	Check sum error	Check if there is error in the program and download the program again.
PLEd	57	There is no "END" command in the program	Check if there is error in the program and download the program again.
PLCr	58	The command MC is continuous used more than 9 times	Check if there is error in the program and download the program again.
PLdF	59	Download program error	Check if there is error in the program and download the program again.
PLSF	60	PLC scan time over-time	Check if the program code is inaccurately written and download the program again.

17.8 CANopen Master Application

Simple control of multiple-axes for certain application can be done by C2000 if the device supports CANopen protocol. One of the C2000 could acts as Master to perform simple synchronous control, e.g. position, speed, zero return, and torque control. The setup can be done in 7 steps:

Step 1: Activate CANopen Master

1. Set Pr.09-45 to 1. (To activate Master function, turn off the power after setting and reboot. The digital keypadKPC-CC01 status will display "CAN Master".)
2. Set Pr. 00-02 to 6 for PLC reset. (Note: This action will erase the program and PLC register and will be set to factory setting.)
3. Turn off the power and reboot.
4. Set PLC control to"PLC Stop mode" by digital keypad KPC-CC01. (If the digital keypad is KPC-CE01 series, set PLC control to"PLC 2". If the drive just came out of the factory, since PLC program is not yet installed, the digital keypad will show PLFF warning code.)

Step 2: Configuration of the Special D in Master

Each slave occupies 100 of Special D space and is numbered 1 to 8 . There are in total of 8 stations. Please refer to 4-3 Special Register in this chapter for Special D register definition.

1. When communication cable 485 is connected, set PLC status to "stop" by WPL soft. (If PLC had already switched to "PLC Stop" mode then PLC status should be "stop" already.)
2. To control the slave address and corresponding station. For example, control 2 stations of the slave (max. 8 stations synchronous control), if the station number is 21 and 22 , set D2000 and D2100 to 20 and 21 and then set D2200, D2300, D2400, D2500, D2600 and D2700 to 0 . The setting can be done via PLC software editor WPL, follow the steps shown:
■ Open WPL Editor > communication> Edit Register Memory(T C D)

■ When the "Register" window appears, click "Transmit".

■ When transmission window appear, select "read" and input the range D2000~D2799 then press enter. The value in D2000~D2799 will be read. If communication failed, check the communication format (pre-defined PLC station is 2, 9600, 7N2, ASCII).
■ Insert the slave station for control. Set D2000 and D2100 to 20 and 21 then set D2200, D2300, D2400, D2500, D2600 and D2700 to 0.
■ Click"Transmit" again. When transmission window appears, input the range D2000~D2799 and enter. The value in D2000~D2799 will be write (If communication error occur and display failed, it means PLC is not in "stop" status. The value can only be write in "stop" status, pleas switch PLC to "stop".)

- Another method is by setting D1091. Set the corresponding bit of the excluding slave to 0 (slave station range from No.1~8). For example, if the user wants to exclude slave No. 2, 6 and 7, please set D1091 = 003B by following steps: WPL Editor > communication> Edit Register Memory(T C D)

3. Setup the communication setting. If following conditions apply to you then no additional setting needs to be done:
■ If the only control in this application is the speed mode of AC motor drive. (For other control such as position and torque control, D2000~D2799 should be set. Please refer to synchronous control on position, torque and zero return for more set up detail.

To perform synchronous control on position for the slave, please enable the corresponding function PDO 3. (P to P function is not yet supported by C2000.)
■ To activate PDO 3 TX (Master sending command to Slave), please set up bit $8 \sim 11$ of the PLC address D2034+n*100. This special D register is defined as below:

	PDO4		PDO3		PDO2		PDO1	
	Torque		Position		Remote I/O		Speed	
Bit	15	$14 \sim 12$	11	$10 \sim 8$	7	$6 \sim 4$	3	
$2 \sim 0$								
Definition	En	Number	En	Number	En	Number	En	
Number								

The pre-defined setting of PDO 3 TX has corresponded to CANopen control word "Index 6040"and CANopen target position" Index 607A". If position control is the only control in this application then simply set Special D register value to $0 \times 0 A 00$.
■ To activate PDO 3 RX (Slave response with the status to Master), please set up bit 8~11 of the PLC address D2067+n*100. This special D register is defined as below:

	PDO4	PDO3		PDO2		PDO1		
	Torque		Position		Remote I/O		Speed	
Bit	15	$14 \sim 12$	11	$10 \sim 8$	7	$6 \sim 4$	3	
Definition	En	Number	En	Number	En	Number	En	
Number								

The pre-defined setting of PDO 3 TX has corresponded to CANopen control word "Index 6041"and CANopen actual position" Index 6064". If position control is the only control in this application then simply set Special D register value to 0x0A00.

In same theory, to perform torque control, please enable the mapping function PDO4.

The speed for 1 corresponding cycle is 8 ms . (When shorten the cycle time to $<8 \mathrm{~ms}$, make sure the time is enough for the data to be transmitted.

User should calculate the corresponding PDO quantity before setting the cycle. The PDO quantity should not be greater than the N. The quantity can be calculated by the following formula.
$\mathrm{N}=(1 \mathrm{cycle}(\mathrm{ms})$ * rate (kbs))/250
Example: 1 cycle is 2 ms , speed= 1000 k , max PDO value is $2 * 1000 / 250=8$. If user wants to set the cycle time to 2 ms , turns off 4 of the C type AC motor drive slave stations must be turned off (since the pre-defined setting is 8 slaves, half of the slave station would be 4). The slave station can be turned off by setting the D2000 $+\mathrm{n}^{*} 100$ of the unused slaves to 0 .

Number of control station ≤ 8.

Controlling 8 slave stations at once can only be done by asynchronous control where to Read/Write the slave is done by CANRX and CANTX command. This is similar to the Read/Write action of Modbus protocol.

The slave complies with DS402 standard.

Does not control Slave 10 terminal.

\boxtimes If above conditions do not apply, please set up the slave corresponding addresses manually by open WPL editor > communication> Edit Register Memory (T C D).

Step 3: Set up Master station number and communication speed.

\boxtimes Set up the station number for the Master (the default setting of Pr.09-46=100). Do not to set the same station number as the Slave.
■ Set up CANopen communication parameter Pr.09-37. It does not matter if the drive is defined as a Master or a Slave, communication speed is set by Pr.09-37 in both case.

Step 4: Coding

Real-time corresponding action: the data can be Read/Write directly to the corresponding special "D" register.

Non Real-time corresponding action:
Read: Reading is made by CANRX command. When reading process is complete, M1066=1. If reading succeeded, M1067 =1; if reading failed, M1067=0.
Write: Writing is made by CANTX command. When writing process is complete, M1066 $=1$. If writing succeeded, M1067=1; if reading failed, M1067 $=0$.
Update: Updating the data is made by CANFLS command. (If special D register is defined as RW type, Master will write the value into the slave. If special D register is defined as RO type, then the data in the Slave will be read and write into the Master.) When updating process is complete, M1066 will be 1. If updating succeeded, M1067=1; if updating failed, M1067=0.

\square Note

When executing CANRX, CANTX and CANFLS commands, the device will wait till M1066 is completed before the next CANRX, CANT or CANFLS begins. When the commands completed, download the program to the drive. (Note: The factory setting of PLC communication protocol is ASCII 7N2 9600 and station number is 2 . Please change WPL Editor setting at Setting> Communication Setting)

Step 5: Setting the Slave station number, communication speed, operation source and command source

CANopen communication is supported by Delta C2000 series and EC series AC motor drive.
The corresponding slave and CANopen speed are shown as below:

	Corresponding Parameter of Drive		Value	Definition
	C2000	E-C		
Slave address	09-36	09-20	0	Disable CANopen Hardware Interface
			1~127	CANopen communication address
CANopen speed	09-37	09-21	0	1M
			1	500K
			2	250K
			3	125K
			4	100K
			5	50K
Source of operation command	00-21		3	
		02-01	5	
Source of frequency command	00-20		6	
	-	02-00	5	
Torque command	11-34	,	3	

The only servo motor and drive that supports CANopen communication interface is A2 series. The corresponding slave station number and communication speed are shown as below:

	Corresponding Parameter of Drive	Value	
	A2		

Step 6: Hardware connection

The terminating resistor must be installed at the two farthest ends as shown in the figure below:

Step 7: Activate PLC Control Function

Download the program after coding is complete and switch PLC mode to Run status. Then reboots the power for Slave and Master. Please refer to CANMaster Test 1 vs. 2 driver.dvp.

Example:

C2000 AC motor drive (1 master vs. 2 slave control)
Step 1: Activate CANopen Master
$\boxtimes \quad$ Set Pr.09-45 to 1. (To activate Master function, turn off the power after setting and reboot. The digital keypadKPC-CC01 status will display "CAN Master".)
■ Set Pr.00-02 to 6 for PLC reset. (Note: This action will erase the program and PLC register and will be set to factory setting.)

- Turn off the power and reboot.

■ Set PLC control to"PLC Stop mode" by digital keypad KPC-CC01. (If the digital keypad is KPC-CE01 series, set PLC control to"PLC 2". If the drive just came out of the factory, since PLC program is not yet installed, the digital keypad will show PLFF warning code.)
Step 2: Configuration of the Special D in Master
$\square \quad$ Open WPL editor
■ Set PLC mode to PLC Stop (PLC2) via the keypad
■ WPL editor read D1070~D1099 and D2000~D2799

- Set D2000=10 and D2100=11
$\square \quad$ Set D2100, 2200, 2300 $2400 \quad 2500 \quad 2600 \quad 2700=0$
■ Download D2000~D2799 setting
Step 3: Set up Master station number and communication speed
\square Set up the station number for the Master (the default setting of Pr.09-46=100). Do not to set the same station number as the Slave.

Set up CANopen communication speed to 1 M (parameter Pr.09-37= 0). It does not matter if the drive is defined as a Master or a Slave, communication speed is set by Pr.09-37 in both case.

Step 4: Coding
Real-time corresponding action: the data can be Read/Write directly to the corresponding special "D" register.

Non Real-time corresponding action:
Read: Reading is made by CANRX command. When reading process is complete, M1066=1. If reading succeeded, M1067 =1; if reading failed, M1067=0.
Write: Writing is made by CANTX command. When writing process is complete, M1066 $=1$. If writing succeeded, M1067=1; if reading failed, M1067 $=0$.
Update: Updating the data is made by CANFLS command. (If special D register is defined as RW type, Master will write the value into the slave. If special D register is defined as RO type, then the data in the Slave will be read and write into the Master.) When updating process is complete, M1066 will be 1. If updating succeeded, M1067=1; if updating failed, M1067=0.

When executing CANRX, CANTX and CANFLS commands, the device will wait till M1066 is completed before the next CANRX, CANT or CANFLS begins. When the commands completed, download the program to the drive. (Note: The factory setting of PLC communication protocol is ASCII 7N2 9600 and station number is 2 . Please change WPL setting at setting> communication setting)

Step 5: Set Slave station number and communication speed.
Slave No.1: Pr.09-37 = 0(speed 1M), Pr.09-36=10 (station number 10)
Slave No.2: Pr. 09-37 = 0(speed 1M), Pr.09-36=10 (station number 11)
Step 6: Hardware connection
The terminating resistor must be installed at the two farthest ends as shown in the figure below:

Step 7: Activate PLC Control Function
Download the program after coding is complete and switch PLC mode to Run status. Then reboots the power for Slave and Master. Please refer to CAN Master Test 1 vs. 2 driver.dvp.

16-9Descriptions of PLC Control Modes
 (Speed, Torque, Homing and Position Modes)

When the AC motor drive is in FOC vector control, it can perform torque mode, position mode and speed mode. However, auto-tuning of motor must be done first for these modes to function.

There are two types of motors, Induction Motor (IM) and Permanent Magnetic Motor (PM). After auto-tuning process, IM motor is ready for AC motor drive to control. For PM motor, user must complete PG offset angle process after auto-tuning. Please refer to Pr.12-58 and Pr.05-00 for more detail.
※ Set up Delta ECMA series PM motor by enter motor parameters, follow the motor parameters shown in Delta Servo Motor Catalogue. It is not required to execute auto-tuning for using Delta ECMA series PM motors.

Setting and Description for Other Control Modes:

Speed Control:

The corresponding registers for Speed Mode are listed in the chart below:
Special M Control Settings

Special M	Descriptions	R/W
M1025	AC motor drive operation status: (0) Stop (1) Start up (must also set M1040 =1)	RW
M1026	AC motor drive opeartion direction: (0) FWD (1) REV	RW
M1040	Power ON	RW
M1042	Quick stop	RW
M1044	Halt	RW
M1052	Frequency lock	RW

Special M Status

Special M	Descriptions	R/W
M1015	Target frequency attained	RO
M1056	Power ON ready	RO
M1058	Quick decelerating to stop	RO

Special D Control Settings

Special D	Descriptions	R/W
D1060	Mode setting (speed mode =0)	RW

Speical D Status

Special D	Descriptions	R/W
D1037	Output frequency of AC motor drive command $(0.00 \sim 600.00)$	RO

Special D	Descriptions	R/W
D1050	Actual mode (0:Speed, 1: Position, 2: Torque, 3: Homing)	RO

Control command for Speed Mode:

FREQ(P)	S1	S2	S3
	Target speed	1st step accel. time	1st step decel. time

Example of Speed Control Mode:

If the drive is in FOC control mode, please auto-tuning the motor before setting PLC control mode to speed control.

1. When setting $\mathrm{D} 1060=0, \mathrm{AC}$ motor drive is in speed mode (default setting).
2. Write FREQ command to PLC program to control AC motor drive's frequency and accel./decel. time.
3. When setting $\mathrm{M} 1040=1, \mathrm{AC}$ motor drive power turns ON but frequency remains 0 .
4. When setting $\mathrm{M} 1025=1, \mathrm{AC}$ motor drive begins to operate till the FREQ frequency is attained and will accel./decel. according to the setting of FREQ.
5. Use M1052 to lock present operation frequency.
6. Use M1044 to hault the drive and decelerate by the decleration setting.
7. Use M1042 to quick stopping the drive. The drive will declerate by it's maximum deceleration speed and it is the speed that would not trigger a fault alarm. However if loading is too large, a fault alarm may still occur.
8. Priority of the control command is: M1040(Power ON) $>$ M1042(Quick Stop) $>$ M1044(Halt) >M1052(LOCK)

Torque Control:

The corresponding registers for Torque Mode are listed in the chart below:
Special M Control Setting

Special M	Description	R/W
M1040	Power ON	RW

Special M Status

Special M	Description	R/W
M1056	Power ON ready	RO
M1063	Target torque attained	RO

Special D Conrol Setting

Special D	Description	R/W
D1060	Mode setting (Torque mode=2)	RW

Special D Status

Special D	Description	R/W
D1050	Actual mode (0:Speed, 1: Position, 2: Torque, 3: Homing)	RO
D1053	Actual torque	RO

Control command for Torque Mode:

TORQ(P)	S1	S2
	Target torque (signed decimal)	Frequency limit

Example of Torque Control Mode:

Before setting PLC program to torque control mode, maker sure the torque parameter settings of the AC motor drive are completed.

1. When setting $\mathrm{D} 1060=2, \mathrm{AC}$ motor drive is in torque mode.
2. Write TORQ command to PLC program for torque and speed limit control.
3. When setting $\mathrm{M} 1040=1, \mathrm{AC}$ motor drive power turns ON and operate till target torque or speed limit is attained. Actual torque value can be read in D1053.

Homing/Position Control:

The corresponding registers for Homing/Position Mode are listed in the chart below:

Special M Control Setting

Special M	Description	R/W
M1040	Power ON	RW
M1048	Run till the new position is attained. For M1048 to function, also need to set control mode to position mode (D1060 $=1$) and set M1040 $=1$.	RW
M1055	Home action begins. For 1055 to function, also need to set control mode to position mode (D1060 $=3$) and set M1040=1.	RW

Special M Status

Special M	Description	R/W
M1064	Target position attained	RO
M1070	Homing completed	RO
M1071	Homing error	RO

Special D Control Setting

Special D	Description	R/W
D1060	Mode selection (1: Position, 3: Homing)	RW

Special D Status

Special D	Description	R/W
D1050	Actual mode (0:Speed, 1: Position, 2: Torque, 3: Homing)	RO
D1051	Actual position (Low word)	RO
D1052	Actual position (High word)	

※ Read both D1051 and D1052 for actual position. The display value is in signed decimal.
Control Command for Position Mode:

DPOS(P)	S1	
	Target position (signed decimal)	

Example of Homing and Position Mode:

Before setting PLC program to homing mode or position mode, maker sure the motor parameter settings of the AC motor drive are completed.

1. Set Pr.00-40 to homing mode and set up corresponding limit sensor and origin point by MI ($\mathrm{MI}=44$ is for reverse run limit, $\mathrm{MI}=45$ is for forward run limit and $\mathrm{MI}=46$ is for homing to origin point). C2000 series AC motor drive only supports Z phase homing to origin point, please choose an Encoder with Z phase.
2. When setting $\mathrm{D} 1060=3, \mathrm{AC}$ motor drive is in homing mode.
3. When setting $\mathrm{M} 1040=1, \mathrm{AC}$ motor drive power turns ON .
4. When setting $\mathrm{M} 1055=1, \mathrm{AC}$ motor drive search for origin point.
5. When homing is complete, M 1070 will be ON . Then set $\mathrm{D} 1060=1$ to switch control mode to position mode. (Ensure M1040 should not be turned OFF to avoid inaccurate origin point.)
6. Write DPOS command to PLC program for setting AC motor drive's target position. Use Pr.00-12 for the absolute or relative position selection.
7. Set M1048 to Pulse ON for one time and needs to be longer than 1 ms , then AC motor drive will begin to operate till the target position is attained (only when $\mathrm{M} 1040=1$). Present motor position can be read from D1051 and D1052.

Step $1 \sim 7$ can be categorized into three parts, please refer to the following example:
Part I: Set control mode to Homing Mode (D1060=3) and turn AC motor drive power ON by trigger X2.

Part II (Homing action): Begins homing mode by trigger X3. The drive will switch to position mode automatically when homing is complete.

Part III (Point to Point Position Control): Switch control mode to Position Mode (D1060=1) and motor will be running forward and reverse between the position setting(+300000~-300000).

※ If user's application does not require homing action, you may skip Part I and Part II and go to the next step. In this example, turn AC motor drive power ON by trigger X2 and set M1002 to position mode, then the PLC program will be in position mode when drive power turns ON.

17-10 Internal Communication for Master Control

The 'Internal Communication' function is designed and developed for the applications where CANopen communication is not applicable or accessable. It replaces CANopen by RS485 and provides real-time transmission as CANopen communication. This communication protocol is available for C2000 series and CT2000 series AC motor drives only and the way it functions is similar to Master/Slave control. A master drive could control a maximum of 8 slaves and the master/slave setting process is very simple.

Slave Drives Settings:

1. Set Pr.09-31= $-1 \sim-8$, the drive is able to control 8 nodes.
2. Set Pr.00-21=1, set source of control to RS485.
3. Select for what RS485 should control: Pr.00-21=2 (Speed command) or Pr.11-33 = 1 (Torque command) or Pr.11-40=2 (Position command).
4. Once completed, the slave setting is done. It is not required to turn on PLC functions.

Master Drives Settings:

1. Set Pr.09-31 = - 10 and set PLC to Enable.

Connection for Hardware:
Establish Master drive and Slave drives connections by using RS485 cable. The CT2000 series AC motor drive is designed with 2 types of RS485 ports, as shown in the figure following:
(Refer to Chapter 06 Control Terminal for more about wiring terminals)

PLC Programming for Master Drive Control

1. In PLC program, D1110 is used for assigning the slave drive user wishes to control. The range setting for D1110 is 1~8 (if D1110 is set to 0 slave 8 is assigned).
2. Once the Slave drive is assigned, set M1035=1 for the Master to control the Slave.
3. Write control command to the corresponding Slave address then Master is able to control the Slave drive.

The corresponding registers for Internal Communication are listed in the chart below:

Special M Control Setting

Special M	Description	R/W
M1035	Enable internal communication control	RW

Special D Control Setting

Special D	Description	R/W
D1110	Number of internal communication nodes(1~8)	RW

Special D	Description							
	Definition	bit	Priority	Speed Mode	Position Mode	Torque Mode	Homing Mode	
D1120 + 10*N	Contorl Command for Internal Communication Node N	0	4	Command Enable	-	-	Return to Origin Point	RW
		1	4	Reverse Command	Switch	-	-	
		2	4	-	-	-	-	
		3	3	Momentary Stop	Momentary Stop	-	-	
		4	4	Frequency Locked	-	-	$\begin{aligned} & \text { Momentary } \\ & \text { Stop } \end{aligned}$	
		5	4	JOG	- ${ }^{-}$	-	-	
		6	2	Quick Stop	Quick Stop	Quick Stop	Quick Stop	
		7	1	Servo ON	Servo ON	Servo ON	Servo ON	
		11~8	4	Switch Multi-step Speed	Switch Multi-step Speed	-	-	
		13~12	4	Switch Deceleration Time	-	-	-	
		14	4	$\begin{gathered} \text { Enable Bit } \\ 13 \sim 8 \end{gathered}$	$\begin{gathered} \text { Enable Bit } \\ \quad 13 \sim 8 \end{gathered}$	-	-	
		15	4	Clear Fault Code	Clear Fault Code	Clear Fault Code	Clear Fault Code	
D1121 + 10*N	Contorl Mode for Internal Communication Node N			0	1	2	3	RW
D1122 + 10*N	Reference Command L of Internal Communication Node N			Speed Command (unsigned decimal)	Position Command (signed decimal)	Torque Command (signed decimal)	-	RW
D1123 + 10*N	Reference Command H of Internal Communication Node N			-		Speed Limit	-	RW

※ $N=0 \sim 7$
Special D Status

Special D	Description	R/W
D1115	Synchronous time cycle of internal communication (ms)	RO
D1116	Internal communication node error (bit0= Slave 1, bit1 = Slave 2, ..., bit7= Slave 8)	RO
D1117	Corresponding on-line bit of internal communication node (bit0= Slave 1, bit1=	RO

Special D	Description	R/W
	Slave 2, ..., bit7= Slave 8)	

Special D	Description					$\begin{gathered} \text { R/W } \\ \text { bit } \end{gathered}$
	Definition	bit	Definition	bit	Definition	
D1126 + 10*N	0	Frequency Attained	Position Attained	Torque Attained	Homing Completed	RO
	1	Forward Run	Forward Run	Forward Run	Forward Run	
		Reverse Run	Reverse Run	Reverse Run	Reverse Run	
	2	Warning	Warning	Warning	Warning	
	3	Error	Error	Error	Error	
	5	JOG				
	6	Quick Stop	Quick Stop	Quick Stop	Quick Stop	
	7	SERVO ON	SERVO ON	SERVO ON	SERVO ON	
D1127 + 10*N		Actual Frequency	Actual Position (signed decimal)	Actual Torque (signed decimal)	-	RO
D1128 + 10*N		-		-	-	

Example: The PLC programming diagram below shows how to use 'Internal Communication' to control the frequency of Slave 1 and switches between 30.00 Hz and 60.00 Hz .

Diagram 1: Detects Slave drive on-line status and check if error occurs. Then set internal communication node 0 to the control command user wishes to control.

0

Diagram 2: When Slave 1 on-line status is detected, it will delay for 3 seconds before control command is enabled.

Diagram 3: Commanding Slave 1 to forward run in 30.00 Hz for 1 second and reverse run in 60.00 Hz for 1 second and repeats frequency switching.

17-11 Counting Function via MI8

The Multi-function Input Terminal (MI8) can be used for single direction Pulse counting and provides a maximum speed of 100K. To initiate MI8 for counting, simply set M1038 to ON and the count value will be saved to D1054 and D1055 in 32bit signed decimal. When M1039 is ON, counting value will reset to 0 .

※ WhenPLC program M1038 and M1039 uses MI8 for counting function, the previous AC motor drive setting of MI8 is disabled and have no function.

17-12 Remote IO Control Application of MODBUS (using Modbus)

C2000 internal PLC supports reading and writing of 485, and it is realized by MODRW command. But before programming, it is necessary to define the serial as PLC 485, which sets P09-31 $=-12$. After setting, standard Function defined by 485 can be used to read or write command to other nodes. Communication speed definition can be set in 09-01. Communication protocol can be set in P09-04, and current PLC node definition can be set in P09-35. So far, the Functions supported by C2000 are:
Reading Coil (H1), Reading Input (0x02), Reading Register (0x03), Writing single Register (0x06), Writing multiple Coil ($0 \times 0 \mathrm{~F}$) and writing multiple Register (0×10). Explantion as below:

MODRW Command					Meaning	Slave is Delta PLC	Slave is Delta Motor Drive
S1	S2	S3	S4	S5			
Node	Comm.	Addr.	Cor. D register	Length			
K3	H01	H500	D0	K18	Read Coil (Bit)	Read slave 3 PLC 18 bits from Y0~ Y21, and save to master bit 0~ bit 15 of D0 and bit $0 \sim$ bit 3 of D1	Does not support this Function
K3	H02	H400	D10	K10	Read Input (Bit)	Read slave 3 PLC 10 bits from X0~ X11, and save to master bit 0~ bit 9 of D10	Does not support this Function
K3	H03	H600	D20	K3	Read Register (word)	Read slave 3 PLC 3 words of T0~T2, and save to master D20 ~ D22	Read slave 3 motor drive 3 words from 06-00~06-02, and save to master D20 ~ D22
K3	H06	H610	D30	XX	Read single Register (word)	Write slave 3 PLC to T16 from master D30	Write slave 3 motor drive to 06-16 from master D30
K3	H0F	H509	D40	K10	Read multiple Coil (Bit)	Write slave 3 PLC to $\mathrm{Y} 11 \sim \mathrm{Y} 12$ frommaster bit 0~bit 9 of D40	Does not support this Function
K3	H10	H602	D50	K4	Read multiple Register (word)	Write slave 3 PLC to T2~T5 from master D50~D53	Write slave 3 motor drive to 06-02 ~ 06-05 from master D50~D53

※ XX means Disregard
When executing MODRW, the status will be shown in M1077 (485 reading and writing complete), M1078(485 reading and writing error), and M1079 (485 reading and writing time out). The definition of M1077 will be cleared as 0 when commanding MODRW. When feedback is complete, error, or time out, M1099 will be set as On.

Example program : Each function testing

The first command will be transfer timing when turning on.

When feedback is finished without error, switch to next command

When occurring Time out or feedback error, M1077 will be ON, and after 30 times scan cycle, commanding again

After finishing all commands, repeat again

Example :

To control RTU-485.

Step 1 : Set communication protocol, assuming communication protocol is $115200,8, \mathrm{~N}, 2, \mathrm{RTU}$ C2000 : PLC default node is 2 (9-35)
$9-31=-12$ (COM1 controlled by PLC) , 9-01=115.2 (communication speed is 115200) $9-04=13$ (protocol is $8, \mathrm{~N}, 2$, RTU)

RTU485: node $=8$ (example)

PA3	PA2	PA1	PA0	DR2	DR1	DR0	A/R
1	0	0	0	1	1	1	0

Communication station \#:
ID0~ ID7 are defined as $2^{0}, 2^{1}, 2^{2} \ldots 2^{6}, 2^{7}$

Communication protocol

PA3	PA2	PA1	PAO	A/R	Communication 'Protocol
OFF	OFF	OFF	OFF	ON	$7, E, 1 \cdot A S C I I$
OFF	OFF	OFF	ON	ON	$7,0,1 \cdot A S C I I$
OFF	OFF	ON	OFF	ON	$7, E, 2 \cdot A S C I I$
OFF	OFF	ON	ON	ON	$7,0,2 \cdot A S C I I$
OFF	ON	OFF	OFF	ON	$7, N, 2 \cdot A S C I I$
OFF	ON	OFF	ON	ON	$8, E, 1 \cdot A S C I I$
OFF	ON	ON	OFF	ON	$8, O, 1 \cdot A S C I I$
OFF	ON	ON	ON	ON	$8, N, 1 \cdot A S C I I$
ON	OFF	OFF	OFF	ON	$8, N, 2 \cdot A S C I I$
OFF	ON	OFF	ON	OFF	$8, E, 1 \cdot R T U$
OFF	ON	ON	OFF	OFF	$8, O, 1 \cdot R T U$
OFF	ON	ON	ON	OFF	$8, N, 1 \cdot R T U$
ON	OFF	OFF	OFF	OFF	$8, N, 2 \cdot R T U$

DR2	DR1	DR0	Communicaton Speed
OFF	OFF	OFF	$1,200 \mathrm{bps}$
OFF	OFF	ON	$2,400 \mathrm{bps}$
OFF	ON	OFF	$4,800 \mathrm{bps}$
OFF	ON	ON	$9,600 \mathrm{bps}$
ON	OFF	OFF	$19,200 \mathrm{bps}$
ON	OFF	ON	$38,400 \mathrm{bps}$
ON	ON	OFF	$57,600 \mathrm{bps}$
ON	ON	ON	$115,200 \mathrm{bps}$

Step 2: Setting controlled equipments. We can connect DVP16-SP(8 IN 8 OUT), DVP-04AD (4 channels AD) , DVP02DA(2 channels DA) and DVP-08ST(8 switches) to RTU 485 sequentially. With RTU485 definition, correspond terminals as below:

DVP-04AD (4 channels AD), DVP02DA(2 channels DA) 和 DVP-08ST(8 switches)

Module	Terminals	485 Address
DVP16-SP	$\mathrm{XO} \sim \mathrm{X7}$	$0400 \mathrm{H} \sim 0407 \mathrm{H}$
	$\mathrm{YO} \sim \mathrm{Y7}$	$0500 \mathrm{H} \sim 0507 \mathrm{H}$
DVP-04AD	ADO \sim AD3	$1600 \mathrm{H} \sim 1603 \mathrm{H}$
DVP02DA	DA0 \sim DA1	$1640 \mathrm{H} \sim 1641 \mathrm{H}$
DVP-08ST	Switch $0 \sim 7$	$0408 \mathrm{H} \sim 040 \mathrm{FH}$

Step 3 : Physical cinfiguration

Step 4 : Programming PLC

0

56

pen contac

Control Out Y

Control DA Value ($0 \sim 4000$)

Step 5 : Real action:

I/O testing : Toggling Switch, the corresponding reaction of M115 ~ M108 can be observed. In addition, the signals of output can be also observed (every one second add 1) (Binary display)

AD DA testing : D200 and D201 is around 2 times of D300, and keep increasing; D202 and D203 is around 2 times of D301, and keep decreasing.

Monitor ADO ~ AD3 (0 ~ 8000)

Control Out Y

M101

	1314
INCP	D100

1s clock p
ulse, 0.5s
Control DA Value ($0 \sim 4000$)

18 Introduction to BACnet

1. About BACnet:

BACnet is an ASHRAE communication protocol for building automation and control networks. (ASHRAE: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.). CP2000's BACnet is based on version 20004.

BACnet's regulations are related to several kind of physical layers' interfaces. The physical layers built inside CP200 are achieved via MS/TP interface.

The BACnet of CP2000 supports a device type called B-ASC. B-ASC supports five types of services such as DS-RP-B, DS-WP-B, DM-DDB-B, DM-DOB and DM-DCC-B.

2. Definition of BACnet's ICS:

CP2000-Object:

Property Type	Object Type supported		
	Device	Analog Value	Binary Value
	Supported	Supported	Supported
Object Identifier ;	V	V	V
Object Name	V	V	V
Object Type	V	V	V
System Status	V		
Vendor Name	V		
Vendor Identifier	V		
Model Name	V		
Firmware Revision	V		
Appl Software revision	V		
Protocol Version	V		
Protocol Revision	V		
Services Supported	V		
Object Types supported	V		
Object List	V		
Max APDU Length	V		
Segmentation Support	V		

APDU Timeout	V		
Number ADPU Retries	V		
Device Address Binding	V		
Database Revision	V	V	V
Preset Value		V	V
Status Flags		V	V
Event State		V	V
Out-of-Service		V	V
Units		$\mathrm{V} *$	$\mathrm{~V}^{*}$
Priority Array			V
Relinquish Default			V
Active Text			
Inactive Text			

Analog Values

Control of Analog Values

BACnet		Unit	bit	Limit	Value	Note	
Address	$\begin{gathered} \text { Pro-p } \\ \text { erty } \end{gathered}$					Speed mode	Torque mode
AV 30	C	NO_UNITS	0	4	0	fcmd $=0$	
					1	fcmd $=$ Fset(Fpid)	
			1	4	0	Fwd command	
					1	Reverse command	
			2			No function	No function
			3	3	0	Continue running to target speed	Free(Continue running to target torque)
					1	Follow deceleration setting, stop temporary	Torque stops at current speed
			4	4	0	Continue running to target speed	
					1	Frequency stops at current frequency	
			5	4		No function	No function
			6	2	0	None	None
					1	Quick Stop	Quick Stop
			7	1	0	Servo OFF	Servo OFF
					1	Servo ON	Servo ON
			14~8			No function	No function
			15	4	Pulse 1	Clear error code	Clear error code
AV 31	C	NO_UNITS					
AV 32	C	HERTZ				Speed command (unsigned numbers)	Profile velocity(unsigned numbers)
AV 33	C	NO_UNITS					
AV 34	C	NO_UNITS					
AV 35	C	NO_UNITS					
AV 36	C	NO_UNITS					Torque command (signed numbers)
AV 37	C	NO_UNITS					Speed limit

*Property C means Commandable which has properties such as priority array and relinquish default.

Display of Analog Values

Address	Propert y	Unit	bit	Value	Note
AV 100	R	$\underset{\mathrm{S}}{\mathrm{NO}}$			Error code
AV101	R	$\left\lvert\, \begin{gathered} \text { NO_UNIT } \\ \text { S } \end{gathered}\right.$	1~0	00	Drive stops.
				01	Drive decelerates
				10	Drive standby
				11	Drive in operation
			2	0	Jog command OFF
				1	Jog command ON
			$4 \sim 3$	00	Drive forward
				01	From reverse to forward
				10	From forward to reverse
				11	Drive reverse
			7 ~ 5		Reserved
			8	1	Source of main frequency communication interface
			9	1	Input main frequency from analog/external terminal signal
			10	1	Operation command from communication interface
			15 ~ 11		Reserved
AV102	R	HERTZ			Frequency command (F)
AV103	R	HERTZ			Output frequency (H)
AV104	R	AMPERE			Output current (AXXX.X)
AV105	R	VOLTS			DC-BUS voltage (UXXX.X)
AV106	R	VOLTS			Output voltage (EXXX.X)
AV107	R	HERTZ			Current running speed of the multi-speed command
AV108	R	$\begin{array}{\|c} \hline \text { NO_UNIT } \\ \mathrm{S} \end{array}$			
AV109	R	$\begin{array}{\|c\|} \hline \text { NO_UNIT } \\ \text { S } \end{array}$			Attribute value
AV110	R	$\begin{gathered} \text { DEGREE } \\ \text { S_ANGU } \\ \text { LAR } \\ \hline \end{gathered}$			Power factor angle
AV111	R	$\begin{gathered} \text { NO_UNIT } \\ \text { S } \\ \hline \end{gathered}$			Output torque
AV112	R	$\begin{gathered} \text { NO_UNIT } \\ \text { S } \end{gathered}$			Output rotational speed (rpm)
AV113	R	$\begin{array}{\|c} \hline \text { NO_UNIT } \\ \text { S } \end{array}$			Reserved
AV114	R	$\begin{gathered} \text { NO_UNIT } \\ \mathrm{S} \end{gathered}$			Reserved
AV115	R	$\begin{array}{c\|} \hline \text { KILOWA } \\ \text { TT } \\ \hline \end{array}$			Output power

AV116	R	NO_UNIT S		
AV117	R	NO_UNIT S		
AV118~ defined value 119	R	NO_UNIT S		

Address	Propert y	Unit	bit	Value		Note
AV130	R	$\underset{\mathrm{S}}{\text { NO_UNIT }}$	0	0	Frequency command not reached	Torque command not reached
				1	Frequency command reached	Torque command reached
			1	0	Forward	Forward
				1	Reverse	Reverse
			2	0	No warning	No warning
				1	Warning	Warning
			3	0	No error	No error
				1	Error	Error
			5	0	None	None
				1	On JOG	On JOG
			6	0	None	None
				1	On Quick Stop	On Quick Stop
			7	0	PWM OFF	PWM OFF
				1	PWM ON	PWM ON
			15~8	-	-	-
AV131	R	$\begin{array}{\|c} \hline \text { NO_UNIT } \\ \text { S } \\ \hline \end{array}$		-	-	-
AV132	R	HERTZ			Actual output frequency	Actual output frequency
AV133	R	$\begin{array}{\|c} \hline \text { NO_UNIT } \\ \mathrm{S} \\ \hline \end{array}$		-	-	-
AV134	R	$\begin{array}{\|c} \hline \text { NO_UNIT } \\ \hline \end{array}$				
AV135	R	$\begin{array}{\|c} \hline \text { NO_UNIT } \\ \mathrm{S} \end{array}$			Reserved	
AV136	R	$\begin{array}{\|c} \hline \text { NO_UNIT } \\ \hline \end{array}$			Actual torque	Actual torque
$\begin{gathered} \hline \text { AV137~ } \\ 139 \\ \hline \end{gathered}$	R	$\begin{array}{\|c} \hline \text { NO_UNIT } \\ \mathrm{S} \end{array}$			Reserved	
AV145	R	$\begin{array}{\|c} \hline \text { NO_UNIT } \\ \mathrm{S} \\ \hline \end{array}$			ID code of the AC motor drive	

BACnet		Modbu s	Unit	Value	Note
Addres s	Propert \mathbf{y}	Addres s			
AV150	R	2200H	AMPERES		Display output from drive to motors
AV151	R	2201H	NO_UNITS		Display attribute value at TRG terminal
AV152	R	2202H	HERTZ		Display actual output frequency
AV153	R	2203H	VOLTS		Display the DC voltage value detected in the drive
AV154	R	2204H	VOLTS		Display output value of U,V,W of this drive
AV155	R	2205H	NO_UNITS		Display power factor angles of U,V,W
AV156	R	2206H	KILOWATTS		Display output power of U,V,W (kW)
AV157	R	2207H	$\begin{aligned} & \hline \text { REVOLUTION } \\ & \text { S } \\ & \text { PER_MINUTE } \end{aligned}$		Display estimated (r 00: fwd rotational speed ; - 00: reverse rotational speed)
AV158	R	2208H	NEWTON METER		Display estimated $\mathrm{N}-\mathrm{m}$ (t 0.0 : fwd torque ; - 0.0 : reverse torque)
AV159	R	2209H	NO_UNITS		
AV160	R	220AH	PERCENT		When PID function is enabled, display PID feedback value in \%.
AV161	R	220BH	PERCENT		Display AVI1 analog input terminal signal, $0 \sim 10 \mathrm{~V}$ and 0~100\%
AV162	R	220CH	PERCENT		Display ACI analog input terminal signal, , 4~20mA/0~10V and 0~100\%
AV163	R	220DH	PERCENT		Display AVI2 analog input terminal signal, , 0V 10 V and 0~100\%
AV164	R	220EH	DEGREES CELSIUS		Display IGBT's temperature in ${ }^{\circ} \mathrm{C}$
AV165	R	220FH	DEGREES CELSIUS		Display capatcitor's temperature in ${ }^{\circ} \mathrm{C}$
AV166	R	2210H	NO_UNITS		Digital input, ON/OFF status, see Pr02-10
AV167	R	2211H	NO_UNITS		Digital output ON/OFF status, see 02-15
AV168	R	2212H	NO_UNITS		Display current speed of the multi-speed
AV169	R	2213H	NO_UNITS		Corresponding CPU Pin status to digital input
AV170	R	2214H	NO_UNITS		Corresponding CPU Pin status to digital output
AV171	R	2215H	NO_UNITS		
AV172	R	2216H	NO_UNITS		
AV173	R	2217H	NO_UNITS		
AV174	R	2218H	NO_UNITS		
AV175	R	2219H	NO_UNITS		Display number of times of over load. (0.)
AV176	R	221AH	PERCENT		Display GFF's value in \% (G.)
AV177	R	221BH	NO_UNITS		
AV178	R	221CH	NO_UNITS		Display value of D1043, the register of PLC (C)
AV179	R	221DH	NO_UNITS		
AV180	R	221EH	NO_UNITS		User's physical output

Analog Values' Parameter Setting

BACnet		Preset value	BACnet		Preset value	Note
Address	$\begin{array}{\|c\|} \hline \text { Pro- } \\ \text { perty } \end{array}$		Address	$\begin{array}{\|c\|} \hline \text { Pro- } \\ \text { perty } \end{array}$		
AV 200	W	NULL	AV 300	C	----	no-corresponding terms
AV 201	W	NULL	AV 301	C	----	no-corresponding terms
AV 202	W	NULL	AV 302	C	----	no-corresponding terms
AV 203	W	NULL	AV 303	C	--	no-corresponding terms
AV 204	W	NULL	AV 304	C	----	no-corresponding terms
AV 205	W	NULL	AV 305	C	----	no-corresponding terms
AV 206	W	NULL	AV 306	C	----	no-corresponding terms
AV 207	W	NULL	AV 307	C	----	no-corresponding terms
AV 208	W	NULL	AV 308	C	----	no-corresponding terms
AV 209	W	NULL	AV 309	C	----	no-corresponding terms
AV 210	W	NULL	AV 310	C	----	no-corresponding terms
AV 211	W	NULL	AV 311	C	----	no-corresponding terms
AV 212	W	NULL	AV 312	C	----	no-corresponding terms
AV 213	W	NULL	AV 313	C	--	no-corresponding terms
AV 214	W	NULL	AV 314	C	----	no-corresponding terms
AV 215	W	NULL	AV 315	C	----	no-corresponding terms
AV 216	W	NULL	AV 316	C	----	no-corresponding terms
AV 217	W	NULL	AV 317	C	----	no-corresponding terms
AV 218	W	NULL	AV 318	C	----	no-corresponding terms
AV 219	W	NULL	AV 319	C	----	no-corresponding terms

Binary Values :

For Present Value Access Types, R = Read-only, W = Writable, C = Commandable. Commandable values support priority arrays and relinquish defaults.

3.Steps to set up BACnet in CP2000

1. Set Pr09-31 =1 so the COM1 protocol becomes BACnet.(Note that RJ45 and RS485 shares the same PIN, so when BACnet is enabled, Modbus, PLC upload/download functions, VFDSoft and VFD Explorer will be disabled.). When that is set, the COM1 Communication Protocol stays at 8N1 (See Pr.09-04 = 6).
2. Set $\operatorname{Pr} 00-20=1$, Source of the master frequency command $=$ RS485 serial communication.
3. Set $\operatorname{Pr} 00-21=2$, RS485 serial communication.
4. Set PR09-50, BACnet's MS/TP station number 0~127
5. Set Pr09-51, BACnet baud rate, 9600, 19200 or 38400.
6. Set device instance, setting range $0 \sim 4194303$. It is a combination of Pr09-52 and Pr09-53, for example, $\operatorname{Pr} 09-53=78$ and $\operatorname{Pr} 09-52=1234$, then the device instance's value $=781234$.
7. When you need to set up main station, use Pr09-55 to search for range of station number.
8. If you need to set up a password, use Pr09-56 to set it up. If set up is successful, keypad will display 8888.
9. Then connect a communication cable as shown in the diaram below.

10. At Pr09-30, choose a communication decoding method, 20XX or 60XX.

20XX decoding method: to control AV100 ~ AV102
60XX decoding method: to control AV150 to AV157
11. When the 10 points above are done, you now just need to control corresponding Analog Value.

4. Description of the Analog Value

BACnet		Modbus	bit	Limit	Value	Note	
Address	Property	Address				Speed mode	Torque mode
AV0	C	2000H	1~0		00	$0:$ No function	0 : No function
					01	1 : Stop	1 : Stop
					10	2 : Enable	2 : Enable
					11	3 : No function	3 : No function
			3~2			No function	No function
			5~4		00	No function	
					01	Fwd command	
					10	Reverse command	
					11	Direction changing command	
			15~6			Reserved	
AV1	C	2001H				Frequency Command	
AV2	C	2002H	0		0	E.F. ON	
					1	E.F. OFF	
			1		Pulse 1	Reset command	
			2		0	External interrupt(B.B) OFF	
					1	External interrupt (B.B) ON	
			15~3			Reserved	

*Property C means Commandable which has properties such as priority array and relinquish default

BACnet		Modbus	bit	Limi	Value	Note	
Address	Property	Address				Speed mode	Torque mode
AV30	C	6000h	0	4	0	fcmd $=0$	
					1	fcmd = Fset(Fpid)	
			1	4	0	Fwd command	
					1	Reverse command	
			2			No function	No function
			3	3	0	Continue running to target speed	Continue running to target speed
					1	Follow deceleration setting, stop temporary	Follow deceleration setting, stop temporary
			4	4	0	Continue running to target speed	
						Continue rumning to target	

						speed	
			5	4		No function	No function
			6		0	None	None
			6	2	1	Quick Stop	Quick Stop
			7	1	0	Servo OFF	Servo OFF
				1	1	Servo ON	Servo ON
			14~8			No function	No function
			15	4	Pulse 1	Clear error code	Clear error code
AV31	C	6001h					
AV32	C	6002h				Speed command (unsigned numbers)	Profile velocity((unsigned numbers))
AV33	C	6003h					
AV34	C	6004h					
AV35	C	6005h					
AV36	C	6006h					Torque command (signed numbers)
AV37	C	6007h					Speed limit

*Property C means Commandable which has properties such as priority array and relinquish default

Display of the Analog Value

BACnet		Modbus	bit	Value	Note
Address	Property	Address			
AV100	R	2100H			Error code
AV101	R	2101H	1~0	00	Drive stops.
				01	Drive decelerates
				10	Drive standby
				11	Drive in operation
			2	0	Jog command OFF
				1	Jog command ON
			4~3	00	Drive forward
				01	From reverse to forward
				10	From forward to reverse
				11	Drive reverse
			7~5		Reserved
			8	1	Source of main frequency communication interface
			9	1	Input main frequency from analog/external terminal signal
			10	1	Operation command from communication interface
			15~11		Reserved
AV102	R	2102H			Frequency command (F)
AV103	R	2103H			Output frequency (H)
AV104	R	2104H			Output current (AXXX.X)

AV105	R	2105 H			DC-BUS voltage (UXXX.X)
AV106	R	2106 H			Output voltage (EXXX.X)
AV107	R	2107 H			Current running speed of the multi-speed command
AV108	R	2108 H			
AV109	R	2109 H			Attribute value
AV110	R	210 AH			Power factor angle
AV111	R	210 BH			Output torque
AV112	R	210 CH			Output rotational speed (rpm)
AV113	R	210 DH			Reserved
AV114	R	210 EH			Reserved
AV115	R	210 FH			Output power
AV116	R	2116 H			User defined value
AV117	R	211 BH			User defined page
AV118~AV119	R	----			Reserved

BACnet		Modbus	bit	Value	Note	
Address	$\begin{array}{\|c} \hline \text { Pro } \\ \text { perty } \\ \hline \end{array}$	Address			Speed	Torque
AV130	R	6100h	0	0	Frequency command not reached	Torque command not reached
				1	Frequency command reached	Torque command reached
			1	0	Forward	Forward
				1	Reverse	Reverse
			2	0	No warning	No warning
				1	Warning	Warning
			3	0	No error	No error
				1	Error	Error
			5	0	None	None
				1	On JOG	On JOG
			6	0	None	None
				1	On Quick Stop	On Quick Stop
			7	0	PWM OFF	PWM OFF
					PWM ON	PWM ON
			15~8		-	-
AV131	R	6101h			-	-
AV132	R	6102h			Actual output frequency	Actual output frequency
AV133	R	6103h			-	-
AV134	R	$\begin{gathered} \hline 6105 \mathrm{~h} / 61 \\ 04 \mathrm{~h} \end{gathered}$				
AV135	R	----			Reserved	

AV136	R	6106 h			Actual torque	Actual torque
AV137~139	R	----			Reserved	
Av145	R	0000 h			ID code of the AC motor drive	

BACnet		Modbus	Value	Note
Address	Property	Address		
AV150	R	2200H		Display output from drive to motors
AV151	R	2201H		Display attribute value at TRG terminal
AV152	R	2202H		Display actual output frequency
AV153	R	2203H		Display the DC voltage value detected in the drive
AV154	R	2204H		Display output value of U,V,W of this drive
AV155	R	2205H		Display power factor angles of U,V,W
AV156	R	2206H		Display output power of U,V,W (kW)
AV157	R	2207H		Display estimated (r 00: fwd rotational speed ; - 00: reverse rotational speed)
AV158	R	2208H		Display estimated N-m (t 0.0: fwd torque; - 0.0 : reverse torque)
AV159	R	2209H		
AV160	R	220AH		When PID function is enabled, display PID feedback value in \%.
AV161	R	220BH		Display AVI1 analog input terminal signal, $0 \sim 10 \mathrm{~V}$ and 0~100\%
AV162	R	220 CH		Display ACI analog input terminal signal, , 4~20mA/0~10V and 0~100\%
AV163	R	220DH		Display AVI2 analog input terminal signal, , 0V 10 V and 0~100\%
AV164	R	220EH		Display IGBT's temperature in ${ }^{\circ} \mathrm{C}$
AV165	R	220FH		Display capatcitor's temperature in ${ }^{\circ} \mathrm{C}$
AV166	R	2210H		Digital input, ON/OFF status, see Pr02-10
AV167	R	2211H		Digital output ON/OFF status, see 02-15
AV168	R	2212H		Display current speed of the multi-speed
AV169	R	2213H		Corresponding CPU Pin status to digital input
AV170	R	2214H		Corresponding CPU Pin status to digital output
AV171	R	2215H		
AV172	R	2216H		
AV173	R	2217H		
AV174	R	2218H		
AV175	R	2219H		Display number of times of over load. (0.)
AV176	R	221AH		Display GFF's value in \% (G.)
AV177	R	221BH		
AV178	R	221 CH		Display value of D1043, the register of PLC (C)
AV179	R	221DH		

AV180	R	221 EH		User's physical output
AV181	R	221 FH		Output value of Pr00-05

Parameter Setting of Analog Valuse

BACnet		Preset	BACnet		Preset	
Address	Property		Address	Property		
AV 200	W	NULL	AV 220	C	----	no-corresponding terms
AV 201	W	NULL	AV 221	C	----	no-corresponding terms
AV 202	W	NULL	AV 222	C	----	no-corresponding terms
AV 203	W	NULL	AV 223	C	----	no-corresponding terms
AV 204	W	NULL	AV 224	C	----	no-corresponding terms
AV 205	W	NULL	AV 225	C	----	no-corresponding terms
AV 206	W	NULL	AV 226	C	----	no-corresponding terms
AV 207	W	NULL	AV 227	C	----	no-corresponding terms
AV 208	W	NULL	AV 228	C	----	no-corresponding terms
AV 209	W	NULL	AV 229	C	----	no-corresponding terms

19. PT100 Thermistor Operation Guide

1. At Group 3 Analog Input, select $\operatorname{Pr} 03-00=11$ or $\operatorname{Pr} 03-02=11$ for PT100 input. You also can select Pr03-01=11, but you need to set Pr03-29=1 and switch ACI selection (SW4) as $0 \sim 10 \mathrm{~V}$ on the control terminal.
2. At Pr03-23, AFM2, select 23 for AFM2 Constant Current Output and switch AFM2 selection (SW2) as $0 \sim 20 \mathrm{~mA}$ on the control terminal. Set AFM2 constant current output as $9 \mathrm{~mA}(\operatorname{Pr03-33=45\%)}$
3. The wiring diagram of PT100 is as below.

4. There are two kinds of action level at PT100. The diagram of PT100 protecting action is shown as below.

Level 2 = Pr06-57

Setting range $0.000 \sim 10.000 \mathrm{~V}$
Factory setting 7.000 V
Frequency Comand When voltage of PT100

5. When Pr06-58 $=0 \mathrm{~Hz}$, PT100 function is disabled.

When connecting RTD signal (PT100) to VFD-CP2000, the parameter setting of the auto-frequency decreasing function while the temperature is too high is shown as below

When the temperature of RTD is higher than $135^{\circ} \mathrm{C}\left(275^{\circ} \mathrm{F}\right)$, VFD will decrease automatically the frequency to selected frequency. It stays at that selected frequency until the temperature goes lower than $135^{\circ} \mathrm{C}\left(275^{\circ} \mathrm{F}\right)$. If the temperature is higher than $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$, VFD will decrease the output and decelerating to stop. The error message (OH 3) will also be recorded.

The PT100 detection level of Pr06-56 is set at 1.37.

AC Motor Drives

EMC Standard Installation Guide EMC Compliance Practice

Preface

When an AC motor drive is installed in a noisy environment, radiated and/or conducted noise via signal and power cables can interfere with the correct functioning, cause errors or even damage to the drive. To prevent this, some AC motor drives have an enhanced noise resistance but the results are limited and it is not economical. Therefore, an effective method would be finding the cause of the noise and use the right solution to achieve "no emission, no transmission and no reception of noise". All three solutions should be applied.

Finding the Noise

- Ascertain whether the error is caused by noise.
- Find the source of the noise and its transmission path.
- Confirm the signal and the source of noise

Solutions

- Grounding
- Shielding
- Filtering

Table of Contents

Preface i
Table of Contents ii
Chapter 1 Introduction 1
1.1 What is EMC 1
1.2 EMC for AC Motor Drive 1
Chapter 2 How to prevent EMI 2
2.1 Types of EMI: common-mode and differential mode noise 2
2.2 How does EMI transmit? (Noise transmission) 2
Chapter 3 Solution to EMI: Grounding 4
3.1 Protective Grounding \& Functional Grounding 4
3.2 Ground Loops 5
3.3 Earthing Systems 5
Chapter 4 Solution to EMI: Shielding 9
4.1 What is Shielding? 9
4.2 How to Reduce EMI by Shielding? 10
Chapter 5 Solution to EMI: Filter 12
5.1 Filter 12
5.2 Harmonic Interference 14

Chapter 1 Introduction

1.1 What is EMC?

Electromagnetic Compatibility (EMC) is the ability of an electrical device to function properly in electromagnetic environments. It does not emit electromagnetic noise to surrounding equipment and is immune to interference from surrounding equipment. The goal is to achieve high immunity and low emission; these two properties define the quality of EMC. In general, electrical devices react to high and low frequency phenomena. High frequency phenomena are electrostatic discharge (ESD); pulse interference; radiated electromagnetic field; and conducted high frequency electrical surge. Low frequency phenomena refer to mains power harmonics and imbalance.
The standard emission and immunity levels for compliance depend on the installation location of the drive. A Power Drive System (PDS) is installed in an industrial or domestic environment. A PDS in a domestic environment must have lower emission levels and is allowed to have lower immunity levels. A PDS in an industrial environment is allowed to have higher emission levels but must have more severe immunity levels.

1.2 EMC for AC Motor Drive

When an AC motor drive is put into operation, harmonic signal will occur at the AC drive's power input and output side. It creates a certain level of electromagnetic interference to the surrounding electrical devices and the mains power network. An AC motor dive is usually applied in industrial environments with a strong electromagnetic interference. Under such conditions, an AC drive could disturb or be disturbed.

Delta's AC motor drives are designed for EMC and comply with EMC standard EN61800-3 2004. Installing the AC motor drive accurately will decrease EMI influences and ensure long term stability of the electricity system. It is strongly suggested to follow Delta's user manual for wiring and grounding. If any difficulties or problems arise, please follow the instructions and measures as indicated in this EMC Standard Installation Guide.

Chapter 2 How to prevent EMI

2.1 Types of EMI: Common-mode and differential-mode noise

The electromagnetic noise of an AC motor drive can be distinguished into common-mode and differentialmode noise. Differential-mode noise is caused by the stray capacitance between the conducting wires and common-mode noise is caused by the common-mode coupling current path created by the stray capacitance between the conducting wires and ground.
Basically, differential-mode noise has a greater impact to the AC motor drive and common-mode noise has a greater impact to high-sensitivity electronic devices. An excessive amount of differential-mode noise may trigger the circuit protection system of the AC motor drive. Common-mode noise affects peripheral electronic devices via the common ground connection.

EMC problems can be more serious when the following conditions apply:

- When a large horsepower AC motor drive is connected to a large horsepower motor.
- The AC motor drive's operation voltage increases.
- Fast switching of the IGBTs.
- When a long cable is used to connect the motor to the AC motor drive.

2.2 How does EMI transmit? (Noise transmission path)

Noise disturbs peripheral high-sensitivity electrical devices/systems via conduction and radiation, their transmission paths are shown hereafter:

1. Noise current in the unshielded power cable is conducted to ground via stray capacitances into a common-mode voltage. Whether or not other modules are capable to resist this common-mode noise depends on their Common-Mode Rejection Ratio (CMRR), as shown in the following figure.

2. Common-mode noise in the power cable is transmitted through the stray capacitance and coupled into the adjacent signal cable, as shown in Figure 2. Several methods can be applied to reduce the effect of this common-mode noise; for example, shield the power cable and/or the signal cables, separate the power and signal cables, take the input and output side of the signal cable and twist them together to balance out the stray capacitance, let power cables and signal cables cross at 90°, etc.

Ground
3. Common-mode noise is coupled via the power cable to other power systems then the cable of such a power system is coupled to the transmission system, as shown in Figure 3.

4. The common-mode noise of an unshielded power cable is transmitted to the ground via the stray capacitance. Since both shielded wire and unshielded wire are connected to a common ground, other systems can be interfered with by the common-mode noise that is transmitted from the ground back to the system via the shield. See Figure 4.

5. When excessive pulse modulated currents pass through an un-grounded AC drive cable, it acts as an antenna and creates radiated interference.

Chapter 3 Solution to EMI: Grounding

The leakage current of an electronic equipment is conducted to ground via the grounding wire and the ground electrode. According to Ohm's law, potential differences may arise when the electrode's ground and the ground's ground resistance are different.

According to Ohm's law, the earth resistance for electrode and the ground are different, in this case potential differences may arise.

3.1 Protective Grounding \& Functional Grounding

Please carefully read the following instruction if two types of grounding are applied at the same time. Protective grounding is applied outside buildings and must have low resistance. On the other hand, functional grounding can be applied inside buildings and must have low impedance.
The goal of EMC is to avoid any interference effects. Grounding for EMC can be distinguished by frequency. For frequencies lower than 10 kHz , a single-point ground system should be used and for frequencies higher than 10 kHz , a multiple point ground system should be used.

- Single Point Grounding: all signal grounds of all IT equipment are connected in series to form a single reference point. This point can be grounded directly to earth; to the designated grounding point or to the safety point that is already grounded.
- Multiple Point Grounding: all signals of all IT equipment are grounded independently.
- Hybrid Grounding: this type of grounding behaves differently for low and high frequencies. When two pieces of IT equipment (A and B) are connected via a shielded cable, one end is connected directly to ground while the other end is connected to ground via a capacitor. This type of grounding system fulfils the criteria for high and low frequency grounding.
- Floating grounding: the signals of all IT equipment are isolated from each other and are not grounded.

DC current flows evenly throughout the conductor section. But AC current flows towards the conductor's surface as frequency increases; this is called the "skin effect". It causes the effective cross-section area to be reduced with increasing frequency. Therefore it is suggested to increase the effective ground crosssection area for high frequencies by replacing pigtail grounding by braided conductors or strip conductors. Refer to the following figure.

This is why a thick short ground wire must be implemented for connecting to the common grounding path or the ground busbar. Especially when a controller (e.g. PLC) is connected to an AC motor drive, it must be grounded by a short and thick conducting wire. It is suggested to use a flat braided conductor (ex: metal mesh) with a lower impedance at high frequencies.
If the grounding wire is too long, its inductance may interfere structure of the building or the control cabinet and form mutual inductance and stray capacitance. As shown in the following figure, a long grounding wire could become a vertical antenna and turn into a source of noise.

3.2 Ground Loops

A ground loop occurs when the pieces of equipment are connected to more than one grounding path. In this case, the ground current may return to the grounding electrode via more than one path. There are three methods to prevent ground loops

1. Use a common power circuit
2. Single point grounding
3. Isolate signals, e.g. by photocouplers

In order to avoid "Common Mode Noise", please use parallel wires or twisted pair wiring. Follow this rule and also avoid long wires, it is suggested to place the two wires as close to each other as possible.

3.3 Earthing Systems

The international standard IEC60364 distinguishes three different earthing system categories, using the two-letter codes TN, TT, IT.

- The first letter indicates the type of earthing for the power supply equipment (generator or transformer).
T: One or more points of the power supply equipment are connected directly to the same earthing point.
I: Either no point is connected to earth (isolated) or it is connected to earth via a high impedance.
- The second letter indicates the connection between earth and the power supply equipment.

T: Connected directly to earth (This earthing point is separate from other earthing points in the power supply system.)
\mathbf{N} : Connected to earth via the conductor that is provided by the power supply system

- The third and forth letter indicate the location of the earth conductor.

S: Neutral and earth conductors are separate
C: Neutral and earth are combined into a single conductor

TN system

TN: The neutral point of the low voltage transformer or generator is earthed, usually the star point in a three-phase system. The body of the electrical device is connected to earth via this earth connection at the transformer.
protective earth $(P E)$: The conductor that connects the exposed metallic parts of the consumer. neutral (N): The conductor that connects to the start point in a 3-phase system or that carries the return current in a single phase system.

TN-S system

TN-S: PE and N are two separate conductors that are combined together only near the power source (transformer or generator). It is the same as a three-phase 5 -wire system.

TN-C system

TN-C: PE and N are two separate conductors in an electrical installation similar to a three-phase 5wire system, but near the power side, PE and N are combined into a PEN conductor similar to a three-phase 4 wire system.

TN-C-S system

TN-C-S: A combined earth and neutral system (PEN conductor) is used in certain systems but eventually split up into two separate conductors PE and N. A typical application of combined PEN conductor is from the substation to the building but within the building PEN is separated into the PE and N conductors. Direct connection of PE and N conductors to many earthing points at different locations in the field will reduce the risk of broken neutrals. Therefore this application is also known as protective multiple earthing (PME) in the UK or as multiple earthed neutral (MEN) in Australia

TT system

TT: The neutral point (N) of the low voltage transformer and the equipment frames (PE) are connected to a separate earthing point. The Neutral (N) of the transformer and electrical equipment are connected.

IT system

IT: The neutral point of the transformer and electrical equipment are not earthed, only the equipment frames PE are earthed.
In the IT network, the power distribution system Neutral is either not connected to earth or is earthed via a high impedance. In such a system, an insulated monitoring device is used for impedance monitoring. A built-in filter should be disconnected by the RFI-jumper and an external filter should not be installed when the AC motor drive or the AC servo motor drive is connected to an IT system.

Criteria for earthing system and EMC

	TN-S	TN-C	TT	IT
Safety of Personnel	Good Continuity of the PE conductor must be ensured throughout the installation	Good Continuity of the PE conductor must be ensured throughout the installation	Good $R C D$ is mandatory	Good Continuity of the PE conductor must be ensured throughout the installation
Safety of property	Poor High fault current (around 1kA)	Poor High fault current (around 1kA)	Good Medium fault current (< a few dozen amperes)	Good Low current at the first fault (< a few dozen $m A$) but high current at the second fault
Availability of energy	Good	Good	Good	Excellent
EMC behavior	Excellent Few equipotential Problems: - Need to handle the high leaking currents problem of the device - High fault current (transient disturbances)	Poor (prohibited) - Neutral and PE are the same - Circulation of disturbance currents in exposed conductive parts (high magnetic-field radiation) - High fault currents (transient disturbances)	Good - Over-voltage risk - Equipotential Problems: - Need to handle the high leaking currents problem of the device - RCD (Residualcurrent device)	Poor (should be avoided) - Over-voltage risk - Common-mode filters and surge arrestors must handle the phase to phase voltage. - RCDs subject to nuisance tripping when commonmode capacitors are present - Equivalent to TN system for second fault

Chapter 4 Solution to EMI: Shielding

4.1 What is Shielding?

Electrostatic shielding is used to isolate equipment so that it will not create electromagnetic field interference or be influenced by an external electromagnetic field. A conductive material is used for electrostatic shielding to achieve this isolation.

A Faraday cage can be made from a mesh of metal or a conductive material.
One characteristic of metal is that it is highly conductive and not electrostatic,, which offers shielding and prevents interference by external electrical fields. Metal with its high conductivity protects the internal devices from high voltages-no voltage will enter the cage even when the cage is experiencing a high current. In addition, electromagnetic fields can also pass through the Faraday cage without causing any disturbance.

Electromagnetic shielding is applied to some electrical devices and measurement equipment for the purpose of blocking interference. Examples of shielding include:

- earth high-voltage indoor equipment using a metal frame or a high-density metal mesh
- shielding a power transformer is achieved by wrapping a metal sheet between the primary and secondary windings or by adding an enamel wire to the winding wire which is then earthed.
- a shielding coating, which is made of metal mesh or conductive fibres to provide effective protection for the workers who work in a high-voltage environment.

In the picture below, the radio appears to be not fully covered by metal but if the conductivity of the metal is high, radio waves are completely blocked and the radio will not receive any signal.

Mobile phone connections are also established through the transmission of radio waves. This is why the mobile phone reception is often cut off when we walk into an elevator. The metal walls of the elevator create the same shielding effect just as if we had entered a metal cage. Another example is a microwave oven. The microwave door may seem transparent in visible light, but the density of the metal mesh in the microwave door blocks the electromagnetic waves. A higher density of the metal mesh offers better shielding.

Electromagnetic fields

4.2 How to reduce EMI by Shielding?

Iron and other metals are high conductivity materials that provide effective shielding at extremely low frequencies. But conductivity will decrease as:

1. High frequency signals are applied to the conductor.
2. Equipment is located in a strong magnetic field
3. The shielding frame is forced into a specific form by machines.

It is difficult to select a suitable high-conductivity material for shielding without the help from a shielding material supplier or a related EMI institution.

Metallic Shielding Effectiveness

Shielding Effectiveness (SE) is used to assess the applicability of the shielding shell. The formula is:
$S E d B=A+R+B$ (Measures in $d B$)
where $A=$ Absorption loss (dB)
$\mathrm{R}=$ Reflection loss (dB)
$\mathrm{B}=$ Correction factor (dB) (for multiple reflections in thin shields)

The absorption loss refers to the amount of energy loss as the electromagnetic wave travels through the shield. The formula is:
$A d B=1.314(f \circ \mu) 1 / 2 t$

$$
\text { where } \begin{aligned}
& \mathrm{f}=\text { frequency }(\mathrm{MHz}) \\
& \mu=\text { permeability relative to copper } \\
& \sigma=\text { conductivity relative to copper } \\
& \mathrm{t}=\text { thickness of the shield in centimetres }
\end{aligned}
$$

The reflection loss depends on the source of the electromagnetic wave and the distance from that source. For a rod or straight wire antenna, the wave impedance increases as it moves closer to the source and decreases as it moves away from the source until it reaches the plane wave impedance (377) and shows no change. If the wave source is a small wire loop, the magnetic field is dominant and the wave impedance decreases as it moves closer to the source and increases as it moves away from the source; but it levels out at 377 when the distance exceeds one-sixth of the wavelength.

Electrical Cabinet Design

In a high frequency electric field, shielding can be achieved by painting a thin layer of conductive metal on the enclosure or on the internal lining material. However, the coating must be thorough and all parts should be properly covered without any seams or gaps (just like a Faraday cage). That is only the ideal. Making a seamless shielding shell is practically impossible since the cage is composed of metal parts. In some conditions, it is necessary to drill holes in the shielding enclosure for installation of accessories (like optional cards and other devices).

1. If the metallic components are properly welded using sophisticated welding technology to form an electrical cabinet, deformation during usage is unlikely to occur. But if the electrical cabinet is assembled with screws, the protective insulating layer under the screw must be properly removed before assembly to achieve the greatest conductivity and best shielding.
2. Drilling holes for the installation of wires in the electrical cabinet lowers the shielding effectiveness and increases the chance of electric waves leaking through the openings and emitting interference. We recommend that the drilled holes are as narrow as possible. When the wiring holes are not used, properly cover the holes with metal plates or metal covers. The paint or the coating of the metal plate and metal cover should be thoroughly removed to ensure a metal-to-metal contact or a conductive gasket should be installed.
3. Install industrial conductive gaskets to completely seal the electrical cabinet and the cabinet door without gaps. If conductive gaskets are too costly, please screw the cabinet door to the electrical cabinet with a short distance between the screws.
4. Reserve a grounding terminal on the electrical cabinet door. This grounding terminal shall not be painted. If the paint already exists, please remove the paint before grounding.

Electrical wires and cables

Shielded Twisted Pair (STP) is a type of cable where two insulated copper wires are twisted together with a metal mesh surrounding the twisted pair that forms the electromagnetic shielding and can also be used for grounding.
The individual electrical wires and complete cable are surrounded by (synthetic) rubber, that provides insulation and also protects against damage.
There are two types of electrical cables: high voltage and low voltage. The high voltage cable differs from the low voltage cable in that it has an additional insulation layer called the dielectric insulator within the plastic sleeve. The dielectric insulator is the most important component in insulation. The low voltage cable is usually only filled with a soft polymer material for keeping the internal copper wire in place.

The shield has two functions.

1. To shield the electrical wire and cable.
A. Electric currents increase as power flows through the power cable and generate an electrical field. Such interference can be suppressed inside the cable by shielding the power cables or the electrical wires.
B. To form a protective earthing. When the cable core is damaged, the leakage current will flow via the shield to ground
2. To protect the cable. A power cable used for the computer control purpose generates only relatively low amount of current inside the cable. Such power cable will not become the source of interferences but has great possibility to be interfered by the surrounding electrical devices.

Chapter 5 Solution to EMI: Filter

5.1 Filter

Electromagnetic interference is transmitted in two ways, by radiation and by conduction. The most effective and economical method of reducing radiated interference is to use shielding and of reducing conducted interference is to use an electromagnetic filter.
Noise interference can be divided into two categories: high frequency ($150 \mathrm{kHz} \sim 300 \mathrm{MHz}$) and low frequency $(100 \mathrm{~Hz} \sim 3000 \mathrm{~Hz})$. High-frequency noise fades more over distance and has a shorter wavelength, while low-frequency noise fades less over distance and has a longer wave-length.. Both types of interference are transmitted through power cables and power leads, affecting the power supply side.
High-frequency interference at the power side can be eliminated or attenuated by mounting a filter. The filter consists of coils and capacitors. Some drives do not have a built-in filter, in which case the installation of an external option filter is required. The drawing below shows a standard filter diagram:

1: Differential Mode Section
 2: Common Mode Section

A filter is composed of a Differential Mode section (to eliminate noise below 150 kHz) and a Common Mode section (to eliminate noise above 150 kHz). For high-frequency noise , the inductor acts as a high impedance to form an open circuit and the capacitor acts as a low impedance to form a short circuit. Proper design and dimensioning of inductors and capacitors give a resonant circuit to absorb harmonic currents. Capacitor Cy is earthed to lead the harmonic currents to the ground.

External Filter

The filter and the AC drive should be installed in the control cabinet or on the mounting plate that is earthed to ground. The motor cable must be shielded and as short as possible. Please use the filters recommended by Delta to ensure compliance with EMC standards.

AC Motor Drives with Built-in Filter

1. Since interferences are suppressed by installing an earthed capacitor in the filter, the amount of current to ground (leakage current) could result in electric shocks to personnel or the power system. Please be aware of this problem.
2. Since the leakage current to ground can be high, it is crucial to implement protective earthing to prevent electrical shocks.

Filter Installation (With and Without)

<15m@60Hz with EMI Filter>

<15m@60Hz without EMI Filter>

Zero Phase Reactor (Choke)

Interferences can also be suppressed by installing a zero phase reactor at the power supply side and/or the AC Motor Drive's output, depending on where the interference is. Since currents are large at the power input and the AC Motor Drive's output, please carefully select the magnetic core with suitable current handling capability. An ideal magnetic material for large currents is compound magnetic powder. It has a higher current handling capability and higher impedance compared to pure metallic magnetic cores. It is therefore suitable to implement in a high frequency environment. The impedance can also be enhanced by increasing the turn ratio.

Zero Phase Reactor Installation

There are two installation methods, depending on the size of the zero phase reactor and the motor cable length.

1. Wind the motor cable through the middle of a zero-phase reactor 4 times. Place the reactor and the AC Motor Drive as close to each other as possible.

2. Place all wires through the middle of four zero-phase reactors without winding.

Analog Input Signals

If the analog input signals are affected by noise from the AC motor drive, please connect a capacitor and a ferrite core as indicated in the following diagram.
Wind the wires around the core in same direction for 3 times or more.

5.2 Harmonic Interference

The AC motor drive's input current is non-linear, the input rectifier generates harmonics. Harmonics must be limited to within a certain range to avoid impact the mains power and to avoid current distortion to ensure surrounding devices are not influenced. An AC Motor Drive with built-in DC reactor suppresses harmonic currents (Total Harmonic Current Distortion THID) effectively and therefore reduces the harmonic voltage peaks (Total Harmonic Voltage Distortion).
Harmonic Current at the Power Supply Side

Suppression of Harmonic Currents

When a large portion of lower order harmonic currents ($5^{\text {th }}, 7^{\text {th }}, 11^{\text {th }}$,etc) occur at the power input, surrounding devices will be disturbed and the power factor will be low as a result of reactive power. Installing a reactor at the AC Motor Drive's input effectively suppresses lower order harmonic currents.

AC Reactor

Installed in series with the power supply and is effective in reducing low order current harmonics.
Features of an AC reactor include:

1. Reduces the harmonic currents to the AC Motor Drive and increases the impedance of the power supply.
2. Absorbs interferences generated by surrounding devices (such as surge voltages, currents, and mains surge voltages) and reduce their effect on the AC Motor Drive.
3. Increases the power factor.

DC Reactor

A DC-Reactor is installed between the rectifier and the DC-bus capacitor to suppress harmonic currents and to achieve a higher power factor.

Current Wave Diagrams

With Reactor

[^0]: The content of this manual may be revised without prior notice. Please consult our distributors or download the most updated version at http://www.delta.com.tw/industrialautomation

